首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
When rats were exposed to a cold environment (4 degrees C) for 10 days, tissue glucose utilization was increased in brown adipose tissue (BAT), a tissue specified for non-shivering thermogenesis, but not in skeletal muscle. Cold exposure also caused an increase in the amount of GLUT4, an isoform of glucose transporters expressed in insulin-sensitive tissues, in parallel with an increased cellular level of GLUT4 mRNA. In contrast to BAT, no significant effect of cold exposure was found in skeletal muscle. The results suggest the cold-induced increase in glucose utilization by BAT is attributable, at least in part, to the increased expression of GLUT4.  相似文献   

2.
3.
The authors studied the conversion of U-14C-glucose to total lipids, fatty acids and glyceride glycerol in the epididymal adipose tissue of rats X-irradiated with a single whole body dose of 14.4 Gy X-rays. Analyses were carried out 1, 24, 48 and 72 h after irradiation. In the adipose tissue of irradiated rats, the incorporation of 14C-glucose into all the lipid fractions was raised throughout the whole time of observation (300-600% of the control value). Most of the 14C-glucose was incorporated into the glyceride glycerol fraction.  相似文献   

4.
5.
The rates of either glucose or alanine incorporation into tissue and oxidation to CO2 were studied in rat interscapular brown adipose tissue in order to evaluate the mutual influence of both substrates on their uptake and utilization. Tissue fragments were incubated in vitro in the presence of 1-10 mM glucose and 0.3-1.5 mM alanine. The highest glucose oxidation rate was obtained with the lowest alanine concentrations tested. This suggests that alanine inhibits glucose utilization by this tissue at concentrations that are within the physiological plasmatic range. Glucose levels had little effect upon alanine oxidation, but glucose had a permissive effect on the utilization of alanine. On the basis of these results, it is postulated that this glucose conservation effect of alanine on brown adipose tissue can help to prevent glucose wastage in postprandrial situations.  相似文献   

6.
7.
Exposure of humans and rodents to cold activates thermogenic activity in brown adipose tissue (BAT). This protocol describes a mouse model to study the activation of BAT and angiogenesis in adipose tissues by cold acclimation. After a 1-week exposure to 4 °C, adult C57BL/6 mice show an obvious transition from subcutaneous white adipose tissue (WAT) into brown-like adipose tissue (BRITE). The BRITE phenotype persists after continuous cold exposure, and by the end of week 5 BRITE contains a high number of uncoupling protein-1-positive mitochondria, a characteristic feature of BAT. During the transition from WAT into BRITE, the vascular density is markedly increased owing to the activation of angiogenesis. In BAT, cold exposure stimulates thermogenesis by increasing the mitochondrial content and metabolic rate. BAT and the increased metabolic rate result in a lean phenotype. This protocol provides an outstanding opportunity to study the molecular mechanisms that control adipose mass.  相似文献   

8.
9.
The effect of cold adaptation (4 degrees C) on the in vivo glucose utilization and on the number and properties of the glucose transporters has been studied in brown adipose tissue of normal rats. Glucose utilization was assessed in vivo by the 2-deoxyglucose method. Glucose transporters in plasma and microsomal membranes were quantified by the [3H]cytochalasin B-binding assay. After cold adaptation the in vivo glucose utilization by brown adipose tissue increased 21-fold compared to controls (22 degrees C). The number of glucose transporters in plasma membranes of brown adipose tissue increased from 75 to 436 pmol/g tissue and that of total glucose transporters (plasma + microsomal membranes) from 438 to 754 pmol/g tissue. In addition, cold adaptation increased the Hill coefficient of the plasma membrane transporter for cytochalasin B from 0.90 to 2.03 and decreased the Kd from 100 to 54 nM. This study shows that cold adaptation promotes: a translocation of glucose transporters from an intracellular pool to plasma membranes; an increased number of plasma membrane glucose transporters unaccounted for by the translocation process (e.g. "de novo" synthesis); an increase in the Hill coefficient for cytochalasin B that could also represent changes in the properties of the transporters vis-à-vis glucose, (e.g. positive cooperativity); and a decrease in the Kd value for cytochalasin B.  相似文献   

10.
11.
12.
The influence of cyclic AMP on cartilage degradation was investigated by using phosphodiesterase inhibitors [theophylline and 3-isobutyl-1-methylxanthine (IBMX)], forskolin (which activates the catalytic subunit of adenylate cyclase) and cyclic AMP analogues (dibutyryl and 8-bromo). Breakdown was assessed by quantification of proteoglycans released into the media of 8-day bovine nasal-septum cartilage cultures. Theophylline (1-20 mM), IBMX (0.01-2 mM) and dibutyryl cyclic AMP (0.1-2 mM) had little or no influence on the rate of proteoglycan release from unstimulated (no-endotoxin) cartilages. A small but detectable increase in breakdown was observed with 8-bromo cyclic AMP (0.5-2 mM) and forskolin (50-75 micrograms/ml). To examine potential inhibitory influences of these agents, the cyclic AMP modulators were added to cultures simultaneously treated with Salmonella typhosa endotoxin (12-25 micrograms/ml), a potent stimulator of cartilage degradation. The 3-4-fold stimulation of breakdown by endotoxin was strikingly inhibited by all three classes of cyclic AMP regulators. Optimal inhibition was found at 10-20 mM-theophylline, 1-2 mM-IBMX, 50-75 micrograms of forskolin/ml, 2 mM-dibutyryl cyclic AMP and 2 mM-8-bromo cyclic AMP. Inhibition was shown to be reversible, indicating that cartilages were viable after treatment. Sepharose CL-2B chromatography of proteoglycan products released from treated cartilages showed that the endotoxin-stimulated shift to lower average Mr was significantly prevented by cyclic AMP analogues and phosphodiesterase inhibitors. Together, these results show that agents which increase cyclic AMP inhibit both quantitative and qualitative aspects of endotoxin-mediated cartilage degradation.  相似文献   

13.
The amount of mRNA coding for the brown fat specific uncoupling protein thermogenin was followed in the brown adipose tissue of adult mice. As expected, cold exposure or norepinephrine injection caused an increase in the amount of thermogenin mRNA. However, contrary to expectation, the half-life of thermogenin mRNA was dramatically reduced, from about 18 h to about 3 h, when the mice were cold exposed. This destabilization of thermogenin mRNA was not related to the activity of protein synthesis. It was concluded that in brown adipose tissue an unusual mechanism operates which leads to a destabilization of thermogenin mRNA under the same physiological conditions which increase thermogenin gene expression.  相似文献   

14.
Injection of leptin into white adipose tissue (WAT) increases sympathetic outflow. The present study was designed to determine the effects of capsaicin and other chemicals in WAT on the sympathetic outflow and blood pressure and the roles of WAT afferents and hypothalamic paraventricular nucleus (PVN) in the adipose afferent reflex (AAR). The AAR was induced by injection of capsaicin, bradykinin, adenosine, adenosine triphosphate (ATP), or leptin into inguinal WAT (iWAT) or retroperitoneal WAT (rWAT) in anesthetized rats. The iWAT injection of capsaicin increased the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) but not the heart rate. Bradykinin, adenosine, or leptin but not ATP in the iWAT caused similar effects to capsaicin on the RSNA and MAP. Intravenous, intramuscular, or intradermal injection of capsaicin had no significant effects on the RSNA and MAP. The effects of capsaicin in rWAT were similar to that in iWAT on the RSNA and MAP. Furthermore, injection of capsaicin into the iWAT increased the WAT afferent nerve activities, WAT efferent nerve activity, and brown adipose tissue efferent nerve activity. The iWAT denervation or chemical lesion of the PVN neurons with kainic acid abolished the AAR induced by the iWAT injection of capsaicin. These results indicate that the stimulation of iWAT afferents with capsaicin, bradykinin, adenosine, or leptin reflexly increases the RSNA and blood pressure. The iWAT afferents and the PVN are involved in the AAR induced by capsaicin in the iWAT.  相似文献   

15.
16.
MicroRNAs (miRNAs) are important modulators of thermogenic brown adipose tissue (BAT). They have been involved in its differentiation and hence its functioning. While different regulators of the miRNA machinery have been shown to be essential for BAT differentiation, little is known about their implication in BAT activation. The aim of this work was to evaluate the role of AGO2, the chief miRNA mediator, in BAT activation.We took advantage of two non-genetic models of BAT activation to analyze the miRNA machinery and miRNA expression in BAT. We used principal component analysis (PCA) to obtain an overview of miRNA expression according to the BAT activation state. In vitro, we examined AGO2 expression during brown adipocyte differentiation and activation. Finally, we downregulated AGO2 to reveal its potential role in the thermogenic function of brown adipocytes.PCA analysis allowed to cluster animals on their miRNA signature in active BAT. Moreover, hierarchical clustering showed a positive correlation between global upregulation of miRNA expression and active BAT. Consistently, the miRNA machinery, particularly AGO2, was upregulated in vivo in active BAT and in vitro in mature brown adipocytes. Finally, the partial loss-of-function of AGO2 in mature brown adipocytes is sufficient to lead to a diminished expression of UCP1 associated to a decreased uncoupled respiration.Therefore, our study shows the potential contribution of AGO2 in BAT activation. Since BAT is a calorie-burning tissue these data have a translational potential in terms of therapeutic target in the field of altered fuel homeostasis associated to obesity and diabetes.  相似文献   

17.
The in vitro oxidation to CO2 and tissue incorporation of alanine label by pieces of rat interscapular brown adipose tissue (IBAT) has been investigated. Insulin increased both uptake and oxidation of alanine, as well as the incorporation of alanine label into tissue. This effect only was observed in the presence of glucose in the incubation medium. Noradrenaline hampered alanine incorporation, not affecting its rate of oxidation. IBAT from 4-h cold-exposed rats showed a higher alanine utilization than that of controls; however, IBAT pieces from both 36-h starved and 30-day cold-exposed rats presented lower rates of alanine utilization. The main fate of alanine taken up by the IBAT pieces was its oxidation to CO2. Part of the label was also incorporated into the fatty acid fraction of lipids. The results obtained in this study agree with a possible role of alanine as alternative energetic substrate for IBAT.  相似文献   

18.
Mitochondria from brown adipose tissue.   总被引:5,自引:4,他引:1       下载免费PDF全文
  相似文献   

19.
20.
In recent years, much attention has been paid by the scientific community to phenolic compounds as active biomolecules naturally present in foods. Pterostilbene is a resveratrol dimethylether derivative which shows higher bioavailability. The aim of the present study was to analyze the effect of pterostilbene on brown adipose tissue thermogenic markers in a model of genetic obesity, which shows reduced thermogenesis. The experiment was conducted with 30 Zucker (fa/fa) rats that were distributed in three experimental groups: control and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of uncoupling protein 1 (Ucp1), peroxisome proliferator-activated receptor γ co-activator 1 α (Pgc-1α), carnitine palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor α (Pparα), nuclear respiratory factor 1 (Nfr1), and cyclooxygenase-2 (Cox-2); protein expression of PPARα, PGC-1α, p38 mitogen-activated protein kinase (p38 MAPK), UCP1 and glucose transporter (GLUT4); and enzyme activity of CPT 1b and citrate synthase (CS) were assessed in interscapular brown adipose tissue. With the exception of Pgc-1α expression, all these parameters were significantly increased by pterostilbene administration. These results show for the first time that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the antiobesity properties of these compound needs further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号