首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methylation of the promoter CpG island of the RASSF1A tumor suppressor gene in primary tumors of 172 Muscovites with renal cell carcinoma (RCC), breast cancer (BC), or ovarian epithelial tumors (OET) was assayed by means of methylation-specific PCR (MSP) and PCR-based methylation-sensitive restriction enzyme analysis (MSRA). The MSP, MSRA, and previous bisulfite sequencing data correlated significantly with each other (P 10–6 for Spearman's rank correlation coefficients). By MSP and MSRA, the respective methylation frequencies of the RASSF1A promoter were 86% (25/29) and 94% (50/53) in RCC, 64% (18/28) and 78% (32/41) in BC, and 59% (17/29) and 73% (33/45) in OET. Methylation-sensitive restriction enzymes (HpaII, HhaI, Bsh1236I, AciI) increased the analysis sensitivity and made it possible to establish the methylation status for 18 CpG dinucleotides of the RASSF1A promoter region. With the MSRA data, the density of methylation of the CpG island was estimated at 72% in RCC, 63% in BC, and 58% in OET (the product of the number of CpG dinucleotides and the number of specimens with RASSF1A methylation was taken as 100%). Methylation of the RASSF1A promoter region was observed in 11–35% of the DNA specimens from the histologically normal tissue adjacent to the tumor but not in the peripheral blood DNA of 15 healthy subjects. The RASSF1A methylation frequency showed no significant correlation with the stage, grade, and metastatic potential of the tumor. On the other hand, epigenetic modification of RASSF1A was considerably more frequent than hemizygous or homozygous deletions from the RASSF1A region. These results testify that methylation of the RASSF1A promoter region takes place early in carcinogenesis and is a major mechanism inactivating RASSF1A in epithelial tumors.  相似文献   

2.
The methylation level of 13 CpG-dinucleotides in the promoter region of the putative tumor suppressor gene RASSF1A (3p21.31) was analyzed in HPV-positive squamous cell carcinomas of cervix using methyl-sensitive restriction endonuclease analysis followed by PCR. The methylation from 3 to 13 CpG-dinucleotides was observed in 64% (25/39) tumors, 22% (2/9) morphologically normal tissues adjacent to tumors (P = 0.0306) and in 2 from 3 leucocytes of peripheral blood of patients. The methylation of these CpG-dinucleotides was absent in DNA of healthy donor leucocytes (0/10). Methylation level of the examined fragment of the RASSF1A promoter region was significantly higher in tumors of patients with lymph node metastases in comparison to tumors of patients without metastases (P = 8.5 x 10(-12)). The methylation frequency of RASSF1A gene was in two times higher than hemi- and homozygous deletion frequency at the region of location of this gene (chromosome 3p21.31), determined earlier. These data suggest that methylation of the RASSF1A gene is one of the main ways of this gene inactivation in HPV-positive cervical squamous cell carcinomas. The methylation of the RASSF1A gene is an early event in genesis of tumor and the level of methylation increased with tumor progression.  相似文献   

3.
Methylation-sensitive restriction endonuclease analysis (MSRA) followed by polymerase chain reaction (PCR) have been used to estimate the methylation level of 13 CpG dinucleotides in the promoter region of the putative suppressor gene RASSF1A (3p21.31) in squamous cell carcinomas of the uterine cervix (SCCs) carrying human papillomavirus (HPV) types 16, 18, and related types. Methylation of 3 to 13 CpG pairs has been found in 64% (25 out of 39) tumor DNA samples, 22% (2 out of 9) DNA samples from morphologically normal tissues adjacent to the tumor (P = 0.0306), and two out of three DNA samples from peripheral blood leukocytes of carcinoma patients. These CpG pairs are not methylated in the DNA of leukocytes of healthy donors (0 out of 10). The methylation level of the RASSF1A promoter region studied in tumors of the patients with regional lymph node metastases is significantly higher than in tumors of the patient that have no metastases (P = 8.5 × 10–12). The methylation frequency of gene RASSF1A is two times higher than the frequency of hemi- and homozygous deletions in the chromosome 3 region where the gene is located. The data obtained indicate that methylation is one of the main mechanisms of the RASSF1A gene inactivation in HPV-positive human cervical tumors. The methylation of this gene may be an early event in the genesis of cervical tumors, the methylation level increasing with tumor progression.  相似文献   

4.
目的:通过检测各类型白血病骨髓中RASSF1A基因启动子区甲基化水平,探讨其对白血病分型的临床检测意义。方法:抽选93例不同类型白血病患者(观察组)予以甲基化特异性PCP(MSP)方法进行骨髓RASSF1A基因甲基化状态检测,研究不同类型白血病甲基化状态差异,同期抽选93例非白血病者为对照研究(对照组)。结果:观察组中有13例(13.98%)检测到RASSF1A基因甲基化,而对照组中RASSF1A基因甲基化率为0%,比较差异显著(P0.05)。不同类型白血病RASSF1A甲基化率比较:淋巴系显著高于髓系(P0.05),急性与慢性白血病比较差异无显著性(P0.05)。结论:白血病骨髓中MSP法检测存在RASSF1A甲基化;而RASSF1A基因在淋巴系白血病中的甲基化概率明显增高,因此,对RASSF1A进行甲基化检测有可能作为白血病临床诊断分型的生物学指标之一。  相似文献   

5.
Aim of this work is to provide a detailed comparison of clinical‐pathologic features between well‐differentiated and poorly differentiated tumors according to their BRAF and RASSF1A status. We analyzed RASSF1A methylation by MSP and BRAF mutation by LCRT‐PCR with LightMix® kit BRAF V600E in neoplastic thyroid tissues. Immunohistochemical evaluation of RASSF1A expression was also performed by standard automated LSAB‐HRP technique. An overall higher degree of RASSF1A over‐expression than normal thyroid parenchyma surrounding tumors (P < 0.05) has been found in all malignant well‐differentiated lesions. Moreover, statistically significant higher levels of RASSF1A expression were observed in differentiated cancers associated to an inflammatory autoimmune background (P = 0.01). Amplifiable DNA for LC PCR with LightMix® kit BRAF V600E was obtained in nine PTCs, four FVPTCs, five ATCs, and one control. The V600E mutation was found in 13 of 18 (72%) tumors. BRAF was mutated in 6 of 9 (66%) classical PTC, in 2 of 4 (50%) follicular variant PTC and in all ACs (100%). The overall frequency of RASSF1A promoter methylation observed was 20.5% (9 cases out 44). Hypermethylation of RASSF1A in primary tumors was variable according to histotypes ranging from100% (5/5) in ACs to only 12.5% (4/32) in PTCs. We show a correlation between RASSF1A methylation status and RASSF1A protein expression. Finally, we conclude that BRAF V600E mutation and RASSF1A methylation were pathogenetic event restricted to a subgroup of PTC/FVPTCs in early stage and to clinically aggressive ATCs. J. Cell. Biochem. 114: 1174–1182, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
《Epigenetics》2013,8(2):88-93
Breast cancer is fast emerging as the leading cancer amongst females, especially in young females in metropolitan cities in India. The epigenetic alterations involved in the onset and progression of breast cancer may serve as biomarkers for early detection and prognosis of the disease. Furthermore, using body fluids such as serum offers a non-invasive method to procure multiple samples for such analyses. In this study, we examined methylation status of two normally unmethylated but biologically significant cancer genes, RAS association domain family protein 1A (RASSF1A) and Retionic acid receptor ? (RAR?) by Methylation Specific PCR (MSP) in invasive ductal carcinomas of the breast and paired serum DNA. RASSF1A was found to be methylated in 17 of 20 (85%) breast tumors; while sera from 15 of 20 (75%) of the patients showed concordant methylated RASSF1A, with a sensitivity of 88%. RAR? was methylated in 2/20 (10%) breast tumors. A gene unmethylated in the tumor DNA was always found to be unmethylated in the matched serum DNA for both RASSF1A and RAR? genes; hence specificity was 100%. Immunohistochemical analysis of RAR? protein in 15 breast carcinoma patients harboring unmethylated RAR? in tumors and serum DNA showed the expression of RAR? protein in tumors and paired normal breast tissues, confirming the MSP findings, suggesting that RAR? promoter is functional in these cases. This study underscores the potential utility of DNA methylation based screening of serum, a readily accessible body fluid, as a surrogate marker for early detection of breast cancer.   相似文献   

7.
周向成  李佐青  苏丹  王波  王佳 《生物磁学》2014,(8):1479-1481
目的:通过检测各类型白血病骨髓中RASSFlA基因启动子区甲基化水平,探讨其对白血病分型的临床检测意义。方法:抽选93例不同类型白血病患者(观察组)予以甲基化特异性PCP(MSP)方法进行骨髓RASSFlA基因甲基化状态检测,研究不同类型白血病甲基化状态差异,同期抽选93例非白血病者为对照研究(对照组)。结果:观察组中有13例(13.98%)检测到RASSFlA基因甲基化,而对照组中RASSFlA基因甲基化率为0%,比较差异显著(P〈0.05)。不同类型白血病RASSFlA甲基化率比较:淋巴系显著高于髓系(P〈O.05),急性与慢性白血病比较差异无显著性(P〉0.05)。结论:白血病骨髓中MSP法检测存在RASSFlA甲基化;而RASSFlA基因在淋巴系白血病中的甲基化概率明显增高,因此,对RASSFlA进行甲基化检测有可能作为白血病临床诊断分型的生物学指标之一。  相似文献   

8.
The tumor suppressor gene Ras association domain family 1A (RASSF1A) is highly methylated in a wide range of human sporadic tumors. The current study investigated the hypermethylation of RASSF1A, the expression of RASSF1A protein, and the correlation between these and the clinicopathological features of gallbladder (GB) cancer in Korean patients. Formalin-fixed, paraffin-embedded tumors and non-neoplastic GB tissues (22 carcinomas, 8 adenomas, 26 normal epithelia) were collected from patients who had undergone surgical resection. The methylation status of two regions of the RASSF1A CpG island was determined by methylation-specific PCR (MSP), and the expression of RASSF1A protein was examined by immunohistochemistry using tissue microarrays. The K-RAS mutation was analyzed by direct sequencing. Methylation of the RASSF1A promoter (region 1) was detected in 22.7% (5/22) of carcinomas, 12.5% (1/8) of adenomas, and 0% (0/26) of normal gallbladder epithelia (P = 0.025). Methylation of the first exon (region 2) was found in 36.4% (8/22) of carcinomas, 25.0% (2/8) of adenomas, and 8.0% (2/26) of normal gallbladder epithelia (P = 0.038). K-RAS mutations were present in 4.5% (1/22) of carcinomas and 25% (2/8) of adenomas. RASSF1A methylaton was not associated with clinicopathological factors or K-ras mutation. Reduction or loss of RASSF1A expression was observed in most methylated adenocarcinomas. Three RASSF1A-expressing human biliary tract cancer cell lines examined contained unmethylated promoters and exons 1. These results suggest that downregulation of RASSF1A expression by DNA hypermethylation may be involved in GB carcinogenesis.  相似文献   

9.
目的:分析骨肉瘤组织中RASSF1A基因甲基化状况。方法:运用甲基化特异性PCR(MSP)分别检测44例骨肉瘤组织及相应的癌旁组织中RASSF1A基因启动子甲基化状态并分析其临床病理意义。结果:骨肉瘤组织中RASSF1A基因异常甲基化率(61.4%)显著高于癌旁正常骨组织中RASSF1A基因的异常甲基化率(20.5%),二者之间差异具有统计学意义(P〈0.05)。RASSF1A基因异常甲基化导致组织中RASSF1A基因mRNA和蛋白表达水平均显著降低。另外,RASSF1A基因异常甲基化和肿瘤组织分化程度及全身有无转移情况有相关性(P值分别为0.022和0.016),而与患者年龄、性别、肿瘤位置及大小等临床特征无关(P值分别为0.6944,0.977,0.786和0.831)。结论:RASSF1A基因启动子高甲基化可能是导致其在骨肉瘤中表达水平降低的分子机制之一,有望成为骨肉瘤早期辅助诊断的一个重要分子标志物。  相似文献   

10.
目的:探讨p16基因和RASSF1A基因甲基化与肺癌发生发展的关系和应用于诊断的意义。方法:采用甲基化特异性PCR(Methylation Specific PCR,MSP)检测120例周边型非小细胞肺癌患者癌组织、痰液脱落细胞和120例非肺癌人群的痰液脱落细胞中p16基因和RASSF1A基因甲基化,分析它们与临床特征的关系以及非肺癌人群与肿瘤患者之间的差异。结果:(1)120例周边型非小细胞肺癌组织中,p16基因甲基化率46.7%(56例),RASSF1A基因甲基化率53.3%(64例)。P16和RASSF1A基因甲基化与吸烟程度、肿瘤大小和临床分期正相关(P<0.05)。(2)肺癌痰液脱落细胞中有28例p16基因出现甲基化(23.3%),20例RASSF1A基因出现甲基化(16.7%),其中32例至少存在一个基因的甲基化(26.7%);66例重度吸烟者中只有4例痰液脱落细胞出现p16基因甲基化(6%),4例出现RASSF1A基因甲基化(6%);54例非重度吸烟正常人中仅有2例出现p16基因甲基化(3.7%),RASSF1A基因无甲基化。(3)液基痰细胞病理学检查与痰脱落细胞p16和RASSF1a基因甲基化检测结合起来可有效提高诊断的灵敏度(P<0.05)。结论:烟草可能具有潜在的诱导抑癌基因p16和RASSF1A发生甲基化的作用;p16和RASSF1A基因甲基化可能参与肺癌的生长过程。痰脱落细胞p16和RASSF1a基因甲基化检测结合液基痰细胞病理学诊断,可提高非小细胞肺癌诊断的灵敏度。  相似文献   

11.
The protein encoded by RAR-beta (retinoic acid receptor) gene is a member of the superfamily, of nuclear receptors of retinoids which are involved in regulation of cell differentiation and proliferation. The level of RAR-beta2 mRNA is downregulated in a number of cell lines derived from human epithelial tumors. Inactivation of the RAR-beta2 gene is associated with methylation of its promoter region, which is observed in various carcinomas at a frequency of 30-70%. In renal and ovarian tumors, methylation at this region is poorly studied, the data being contradictory. We report a high methylation frequency in the gene promoter region in RCC (59%, 36/61) and a somewhat lower frequency in EOC (30%, 15/50). Methylation frequency in BC (46%, 26/56) is consistent with the published data. Significant correlation of methylation frequency in promoter region of RAR-beta2 gene with RCC progression (P < or = 0.005 by Fisher's exact test) was established.  相似文献   

12.
The short arm of chromosome 3 (3p) contains several critical regions that have increased frequencies of allelic deletions and harbor a set of tumor suppressor genes. In particular, the range of functions performed by RASSF1A (LUCA region, 3p21.31) includes those potentially associated with carcinogenesis. Among 3p genes, RASSF1A has the highest methylation frequency in epithelial tumors of various locations. For the first time, two different methods (methylation-specific PCR and methylation-sensitive restriction analysis) independently showed that the methylation level of the CpG island in the RASSF1A promoter region significantly correlated with grade and clinical stage of clear cell renal cell carcinoma (RCC). An analysis of 23 3p polymorphic markers in a representative set of 80 RCC cases characterized clinically and histologically revealed that RCC progression significantly correlated with the frequency of allelic imbalances in some critical regions of 3p (LUCA and AP20), but not in 3p as a whole. These data suggest that RCC progression is associated with the methylation of the RASSF1A promoter and, possibly, with structural and functional alterations in other 3p genes. In addition, significant correlation between RASSF1A methylation and allelic losses at the nearby polymorphic marker locus suggests the “two hit” model for the inactivation of this tumor suppressor gene in RCC.  相似文献   

13.

Background

Tumor suppressor gene (TSG) inactivation plays a crucial role in carcinogenesis. FUS1, NPRL2/G21 and RASSF1A are TSGs from LUCA region at 3p21.3, a critical chromosomal region in lung cancer development. The aim of the study was to analyze and compare the expression levels of these 3 TSGs in NSCLC, as well as in macroscopically unchanged lung tissue surrounding the primary lesion, and to look for the possible epigenetic mechanism of TSG inactivation via gene promoter methylation.

Methods

Expression levels of 3 TSGs and 2 DNA methyltransferases, DNMT1 and DNMT3B, were assessed using real-time PCR method (qPCR) in 59 primary non-small cell lung tumors and the matched macroscopically unchanged lung tissue samples. Promoter methylation status of TSGs was analyzed using methylation-specific PCRs (MSP method) and Methylation Index (MI) value was calculated for each gene.

Results

The expression of all three TSGs were significantly different between NSCLC subtypes: RASSF1A and FUS1 expression levels were significantly lower in squamous cell carcinoma (SCC), and NPRL2/G21 in adenocarcinoma (AC). RASSF1A showed significantly lower expression in tumors vs macroscopically unchanged lung tissues. Methylation frequency was 38–76 %, depending on the gene. The highest MI value was found for RASSF1A (52 %) and the lowest for NPRL2/G21 (5 %). The simultaneous decreased expression and methylation of at least one RASSF1A allele was observed in 71 % tumor samples. Inverse correlation between gene expression and promoter methylation was found for FUS1 (rs = −0.41) in SCC subtype. Expression levels of DNMTs were significantly increased in 75–92 % NSCLCs and were significantly higher in tumors than in normal lung tissue. However, no correlation between mRNA expression levels of DNMTs and DNA methylation status of the studied TSGs was found.

Conclusions

The results indicate the potential role of the studied TSGs in the differentiation of NSCLC histopathological subtypes. The significant differences in RASSF1A expression levels between NSCLC and macroscopically unchanged lung tissue highlight its possible diagnostic role in lung cancer in situ recognition. High percentage of lung tumor samples with simultaneous RASSF1A decreased expression and gene promoter methylation indicates its epigenetic silencing. However, DNMT overexpression doesn’t seem to be a critical determinate of its promoter hypermethylation.  相似文献   

14.
Ras-association domain family of genes consist of 10 members (RASSF1-RASSF10), all containing a Ras-association (RA) domain in either the C- or the N-terminus. Several members of this gene family are frequently methylated in common sporadic cancers; however, the role of the RASSF gene family in rare types of cancers, such as bone cancer, has remained largely uninvestigated. In this report, we investigated the methylation status of RASSF1A and RASSF2 in Ewing sarcoma (ES). Quantitative real-time methylation analysis (MethyLight) demonstrated that both genes were frequently methylated in Ewing sarcoma tumors (52.5% and 42.5%, respectively) as well as in ES cell lines and gene expression was upregulated in methylated cell lines after treatment with 5-aza-2′-deoxcytidine. Overexpression of either RASSF1A or RASSF2 reduced colony formation ability of ES cells. RASSF2 methylation correlated with poor overall survival (p = 0.028) and this association was more pronounced in patients under the age of 18 y (p = 0.002). These results suggest that both RASSF1A and RASSF2 are novel epigenetically inactivated tumor suppressor genes in Ewing sarcoma and RASSF2 methylation may have prognostic implications for ES patients.  相似文献   

15.
RASSF1A gene, found at the 3p21.3 locus, is a tumor suppressor gene frequently hypermethylated in human cancers. In this study, we report that compared with melanocytes in normal choroid, RASSF1A is downregulated in uveal melanoma samples and in uveal melanoma cell lines. LOH at 3p21.3 was detected in 50% of uveal melanoma. Moreover, methylation of the RASSF1A promoter was detected in 35 of 42 tumors (83%) and RASSF1A was also weakly expressed at the mRNA level. These data indicate that LOH at the RASSF1A locus or RASSF1A promoter methylation may partly account for the suppression of RASSF1A expression observed in uveal melanoma. Furthermore, following ectopic expression in three RASSF1A-deficient melanoma cell lines (OCM-1, Mel270, and 92.1), RASSF1A weakly reduces cell proliferation and anchorage-independent growth of uveal melanoma cells without effect on ERK1/2 activation, cyclin D1 and p27(Kip1) expression. This study explored biological functions and underlying mechanisms of RASSF1A in the ERK1/2 pathway in normal uveal melanocytes. We showed that siRNA-mediated depletion of RASSF1A increased ERK1/2 activation, cyclin D1 expression, and also decreased p27(Kip1) expression in normal uveal melanocytes. Moreover, that the depletion of RASSF1A induced senescence-associated β-galactosidase activity and increased p21(Cip1) expression suggests that RASSF1A plays a role in the escape of cellular senescence in normal uveal melanocytes. Interestingly, we found that RASSF1A was epigenetically inactivated in long-term culture of uveal melanocytes. Taken together, these data show that depletion of RASSF1A could be an early event observed during senescence of normal uveal melanocytes and that additional alterations are acquired during malignant transformation to uveal melanoma.  相似文献   

16.
As current evidence suggests the involvement of epigenetic modification of tumour suppressor genes in human cancer, we investigated the aberrant promoter methylation of FHIT and RASSF1A genes in human papillomavirus (HPV)-mediated cervical cancer in Indian women. We analysed 60 cervical cancer tissue biopsies of different clinical stage and histological grading and 23 healthy control samples with normal cervical cytology. Methylation-specific polymerase chain reaction (MSP) was performed to analyse the methylation status of FHIT and RASSF1A genes and confirmed by sequencing. Both patients and controls were screened for HPV infection and 98% of the HPV-infected cases showed positivity for HPV type 16. Aberrant promoter methylation of the FHIT gene was found in 28.3% (17/60) of cases and of the RASSF1A gene in 35.0% (21/60) of cases; promoter methylation of both the genes was found in 13.3% (8/60) of cervical cancer cases. Methylation was significantly (p<0.01) associated with the cervical cancer cases compared with controls. None of the 23 controls was found to be methylated in either of these genes. This is the first study indicating a correlation between the promoter methylation of FHIT and RASSF1A genes and the clinical stage and histological grading of cervical carcinoma in Indian women. Future studies are underway to examine the practical implications of these findings for use as a biomarker.  相似文献   

17.
Epigenetic regulation, has been very scarcely explored in familial breast cancer (BC). In the present study RASSF1A and RAR beta promoter methylation and miR17, miR21, miR 124, and let‐7a expression were investigated to highlight possible differences of epigenetic regulation between male and female familial BC, also in comparison with sporadic BC. These epigenetic alterations were studied in 56 familial BC patients (27 males and 29 females) and in 16 female sporadic cases. RASSF1A resulted more frequently methylated in men than women (76% vs. 28%, respectively, P = 0.0001), while miR17 and let‐7a expression frequency was higher in women than in men (miR17: 66% in women vs. 41% in men, P < 0.05; let‐7a: 45% in women vs. 15% in men, P = 0.015). RASSF1A methylation affected 27.6% of familial BC while 83% of familial cases showed high expression of the gene (P = 0.025); on the contrary, only 17% of familial BC presented RAR beta methylation and 55% of familial cases overexpressed this gene (P = 0.005). Moreover, miR17, miR21, and let‐7a resulted significantly overexpressed in familial compared to sporadic BC. RASSF1A overexpression (86% vs. 65%, P = 0.13) and RAR beta overexpression (57% vs. 32%, P = 0.11) were higher in BRCA1/2 carriers even if not statistical significance was reached. BRCA mutation carriers also demonstrated significant overexpression of: miR17 (93% vs. 35%, P = 0.0001), let‐7a (64% vs. 16%, P = 0.002), and of miR21 (100% vs. 65%, P = 0.008). In conclusion, the present data suggest the involvement of RASSF1A in familial male BC, while miR17 and let‐7a seem to be implied in familial female BC. J. Cell. Physiol. 228: 1264–1269, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
目的:检测胃癌组织中RASSFlA和Runx3基因启动子区甲基化状态,探讨二者与胃癌发生发展的关系。方法:采用甲基化特异性PCR(MSP)技术检测57例胃癌组织和相应癌旁组织及30例正常胃黏膜组织中RASSFlA和Runx3基因启动子区甲基化状态。结果:RASSFlA和Runx3甲基化在正常组未见表达。胃癌组RASSFlA基因甲基化率为64.9%(37/57),明显高于癌旁组的7.0%(4/57),差异有统计学意义(P〈0.05),胃癌组Runx3基因甲基化率为49.1%(28/57),明显高于癌旁组5.3%(3/57),差异有统计学意义(P〈O.05)。胃癌组RASSFlA和Runx3基因甲基化率为68.4%(39/57),明显高于癌旁组的8.8%(5/57),差异有统计学意义(P〈0.05)。结论:RASSFlA和Runx3基因启动子区高甲基化与胃癌的发生密切相关,有望为胃癌的早期诊治提供理论依据。  相似文献   

19.
Epigenetic mechanisms involved in primary hyperparathyroidism are poorly understood as studies are limited. In order to understand the role of aberrant DNA promoter methylation in the pathogenesis of parathyroid tumors, we have quantified the CpG island promoter methylation density of several candidate genes including APC (promoter 1A and 1B), β-catenin (CTNNB1), CASR, CDC73/HRPT2, MEN1, P16 (CDKN2A), PAX1, RASSF1A, SFRP1 and VDR in 72 parathyroid tumors and 3 normal parathyroid references using bisulfite pyrosequencing. Global methylation levels were assessed for LINE-1. We also compared methylation levels with gene expression levels measured by qRT-PCR for genes showing frequent hypermethylation. The adenomas displayed frequent hypermethylation of APC 1A (37/66; 56%), RASSF1A (34/66; 52%) and β-catenin (19/66; 29%). One of the three atypical adenomas was hypermethylated for APC 1A. The three carcinomas were hypermethylated for RASSF1A and SFRP1, and the latter was only observed in this subtype. The global methylation density was similar in tumors (mean 70%) and parathyroid reference samples (mean 70%). In general, hypermethylated genes had reduced expression in the parathyroid adenomas using qRT-PCR. Among the adenomas, methylation of APC 1A correlated with adenoma weight (r = 0.306, p < 0.05). Furthermore, the methylation status of RASSF1A correlated with each of APC 1A (r = 0.289, p < 0.05) and β-catenin (r = 0.315, p < 0.01). Our findings suggest a role for aberrant DNA promoter methylation of APC 1A, β-catenin and RASSF1A in a subset of parathyroid tumors.  相似文献   

20.

Objective

Colorectal cancer (CRC) development involves underlying modifications at genetic/epigenetic level. This study evaluated the role of Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation together/independently in sporadic CRC in Indian population and correlation with clinicopathological variables of the disease.

Methods

One hundred and twenty four consecutive surgically resected tissues (62 tumor and equal number of normal adjacent controls) of primary sporadic CRC were included and patient details including demographic characteristics, lifestyle/food or drinking habits, clinical and histopathological profiles were recorded. Polymerase chain reaction - Restriction fragment length polymorphism and direct sequencing for Kras gene mutation and Methylation Specific-PCR for RASSF1A, FHIT and MGMT genes was performed.

Results

Kras gene mutation at codon 12 & 13 and methylated RASSF1A, FHIT and MGMT gene was observed in 47%, 19%, 47%, 37% and 47% cases, respectively. Alcohol intake and smoking were significantly associated with presence of Kras mutation (codon 12) and MGMT methylation (p-value <0.049). Tumor stage and metastasis correlated with presence of mutant Kras codon 12 (p-values 0.018, 0.044) and methylated RASSF1A (p-values 0.034, 0.044), FHIT (p-values 0.001, 0.047) and MGMT (p-values 0.018, 0.044) genes. Combinatorial effect of gene mutation/methylation was also observed (p-value <0.025). Overall, tumor stage 3, moderately differentiated tumors, presence of lymphatic invasion and absence of metastasis was more frequently observed in tumors with mutated Kras and/or methylated RASSF1A, FHIT and MGMT genes.

Conclusion

Synergistic interrelationship between these genes in sporadic CRC may be used as diagnostic/prognostic markers in assessing the overall pathological status of CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号