首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-activated H(+)-selective currents were studied in cultured adult rat alveolar epithelial cells and in human neutrophils using the whole-cell configuration of the patch-clamp technique. The H+ conductance, gH, although highly selective for protons, was modulated by monovalent cations. In Na+ and to a smaller extent in Li+ solutions, H+ currents were depressed substantially and the voltage dependence of activation of the gH shifted to more positive potentials, when compared with the "inert" cation tetramethylammonium (TMA+). The reversal potential of the gH, Vrev, was more positive in Na+ solutions than in inert ion solutions. Amiloride at 100 microM inhibited H+ currents in the presence of all cations studied except Li+ and Na+, in which it increased H+ currents and shifted their voltage-dependence and Vrev to more negative potentials. The more specific Na(+)-H+ exchange inhibitor dimethylamiloride (DMA) at 10 microM similarly reversed most of the suppression of the gH by Na+ and Li+. Neither 500 microM amiloride nor 200 microM DMA added internally via the pipette solution were effective. Distinct inhibition of the gH was observed with 1% [Na+]o, indicating a mechanism with high sensitivity. Finally, the effects of Na+ and their reversal by amiloride were large when the proton gradient was outward (pHo parallel pHi 7 parallel 5.5), smaller when the proton gradient was abolished (pH 7 parallel 7), and absent when the proton gradient was inward (pH 6 parallel 7). We propose that the effects of Na+ and Li+ are due to their transport by the Na(+)-H+ antiporter, which is present in both cell types studied. Electrically silent H+ efflux through the antiporter would increase pHi and possibly decrease local pHo, both of which modulate the gH in a similar manner: reducing the H+ currents at a given potential and shifting their voltage- dependence to more positive potentials. A simple diffusion model suggests that Na(+)-H+ antiport could deplete intracellular protonated buffer to the extent observed. Evidently the Na(+)-H+ antiporter functions in perfused cells, and its operation results in pH changes which can be detected using the gH as a physiological sensor. Thus, the properties of the gH can be exploited to study Na(+)-H+ antiport in single cells under controlled conditions.  相似文献   

2.
Time constants of slow inactivation were investigated in NH(2)-terminal deleted Shaker potassium channels using macro-patch recordings from Xenopus oocytes. Slow inactivation is voltage insensitive in physiological solutions or in simple experimental solutions such as K(+)(o)//K(+)(i) or Na(+)(o)//K(+)(i). However, when [Na(+)](i) is increased while [K(+)](i) is reduced, voltage sensitivity appears in the slow inactivation rates at positive potentials. In such solutions, the I-V curves show a region of negative slope conductance between approximately 0 and +60 mV, with strongly increased outward current at more positive voltages, yielding an N-shaped curvature. These changes in peak outward currents are associated with marked changes in the dominant slow inactivation time constant from approximately 1.5 s at potentials less than approximately +60 mV to approximately 30 ms at more than +150 mV. Since slow inactivation in Shaker channels is extremely sensitive to the concentrations and species of permeant ions, more rapid entry into slow inactivated state(s) might indicate decreased K(+) permeation and increased Na(+) permeation at positive potentials. However, the N-shaped I-V curve becomes fully developed before the onset of significant slow inactivation, indicating that this N-shaped I-V does not arise from permeability changes associated with entry into slow inactivated states. Thus, changes in the relative contributions of K(+) and Na(+) ions to outward currents could arise either: (a) from depletions of [K(+)](i) sufficient to permit increased Na(+) permeation, or (b) from voltage-dependent changes in K(+) and Na(+) permeabilities. Our results rule out the first of these mechanisms. Furthermore, effects of changing [K(+)](i) and [K(+)](o) on ramp I-V waveforms suggest that applied potential directly affects relative permeation by K(+) and Na(+) ions. Therefore, we conclude that the voltage sensitivity of slow inactivation rates arises indirectly as a result of voltage-dependent changes in the ion occupancy of these channels, and demonstrate that simple barrier models can predict such voltage-dependent changes in relative permeabilities.  相似文献   

3.
Stopped-flow fluorometry has been used to measure the forward and reverse rates of the conformational change from E1 to E2 in the fluorescein-modified proton and sodium pumps (1) as a function of Na+ and K+ concentrations to verify the proposed mechanism of ion interaction with the enzymes and (2) as a function of temperature to gain insight into the nature of the conformational transition. (1) The fluorescence changes caused by Na+ and K+ are consistent with rapid competitive binding of the two ions to the E1 conformations of the enzymes followed by rate-limiting transitions between E1K and E2K. (2) Reaction coordinate diagrams for the E1K to E2K transitions in the H,K-ATPase and Na,K-ATPase are qualitatively similar. Enthalpy barriers to reaction are partially compensated by increased entropy in the transition states. However, there are striking quantitative differences between the two enzymes. The E2K to E1K reaction of the H,K-ATPase is more than 2 orders of magnitude faster (tau 1/2 = 6 ms at 22 degrees C) than the reverse rate of the Na,K-ATPase transition (tau 1/2 = 1.6 s), explaining repeated failure to detect a K(+)-"occluded" form of the H,K-enzyme. The E2K conformer of the Na,K-ATPase is 3 orders of magnitude more stable than E1K, while the E1K and E2K conformations of the H,K-ATPase are nearly equivalent energetically.  相似文献   

4.
We used the baculovirus/Sf9 expression system to gain new information on the mechanistic properties of the rat non-gastric H,K-ATPase, an enzyme that is implicated in potassium homeostasis. The alpha2-subunit of this enzyme (HKalpha2) required a beta-subunit for ATPase activity thereby showing a clear preference for NaKbeta1 over NaKbeta3 and gastric HKbeta. NH4(+), K+, and Na+ maximally increased the activity of HKalpha2-NaKbeta1 to 24.0, 14.2, and 5.0 micromol P(i) x mg(-1) protein x h(-1), respectively. The enzyme was inhibited by relatively high concentrations of ouabain and SCH 28080, whereas it was potently inhibited by oligomycin. From the phosphorylation level in the presence of oligomycin and the maximal NH4(+)-stimulated ATPase activity, a turnover number of 20,000 min(-1) was determined. All three cations decreased the steady-state phosphorylation level and enhanced the dephosphorylation rate, disfavoring the hypothesis that Na+ can replace H+ as the activating cation. The potency with which vanadate inhibited the cation-activated enzyme decreased in the order K+ > NH4(+) > Na+, indicating that K+ is a stronger E2 promoter than NH4(+), whereas in the presence of Na+ the enzyme is in the E1 form. For K+ and NH4(+), the E2 to E1 conformational equilibrium correlated with their efficacy in the ATPase reaction, indicating that here the transition from E2 to E1 is rate-limiting. Conversely, the low maximal ATPase activity with Na+ is explained by a poor stimulatory effect on the dephosphorylation rate. These data show that NH4(+) can replace K+ with similar affinity but higher efficacy as an extracellular activating cation in rat nongastric H,K-ATPase.  相似文献   

5.
Based on the following observations we propose that the cytoplasmic loop between trans-membrane segments M6 and M7 (L6/7) of the alpha subunit of Na(+),K(+)-ATPase acts as an entrance port for Na(+) and K(+) ions. 1) In defined conditions chymotrypsin specifically cleaves L6/7 in the M5/M6 fragment of 19-kDa membranes, produced by extensive proteolysis of Na(+),K(+)-ATPase, and in parallel inactivates Rb(+) occlusion. 2) Dissociation of the M5/M6 fragment from 19-kDa membranes is prevented either by occluded cations or by competitive antagonists such as Ca(2+), Mg(2+), La(3+), p-xylylene bisguanidinium and m-xylylene bisguanidinium, or 1-bromo-2,4, 6-tris(methylisothiouronium)benzene and 1,3-dibromo-2,4,6-tris (methylisothiouronium)benzene (Br(2)-TITU(3+)). 3) Ca(2+) ions raise electrophoretic mobility of the M5/M6 fragment but not that of the other fragments of the alpha subunit. It appears that negatively charged residues in L6/7 recognize either Na(+) or K(+) ions or the competitive cation antagonists. Na(+) and K(+) ions are then occluded within trans-membrane segments and can be transported, whereas the cation antagonists are not occluded and block transport at the entrance port. The cytoplasmic segment of the beta subunit appears to be close to or contributes to the entrance port, as inferred from the following observations. 1) Specific chymotryptic cleavage of the 16-kDa fragment of the beta subunit to 15-kDa at 20 degrees C (Shainskaya, A., and Karlish, S. J. D. (1996) J. Biol. Chem. 271, 10309-10316) markedly reduces affinity for Br(2)-TITU(3+) and for Na(+) ions, detected by Na(+) occlusion assays or electrogenic Na(+) binding, whereas Rb(+) occlusion is unchanged. 2) Na(+) ions specifically protect the 16-kDa fragment against this chymotryptic cleavage.  相似文献   

6.
This study analyzes the differential characteristics of the Na(+)-H+ antiport systems observed in several epithelial and non-epithelial renal cell lines. Confluent monolayers of LLC-PK1A cells have a Na(+)-H+ antiport system located in the apical membrane of the cell. This system, however, is not expressed during cell proliferation or after incubation in the presence of different mitogenic agents. In contrast, confluent monolayers of MDCK4 express minimal Na(+)-H+ antiport activity in the confluent monolayer state but reach maximal antiport activity during cell proliferation or after activation of the cells by different mitogenic agents. Similar results were obtained with the renal fibroblastic cell line BHK. The system present in MDCK4 cells is localized in the basolateral membrane of the epithelial cell. In LLC-PK1A cells, an increase in the extracellular Na+ concentration produces a hyperbolic increase in the activity of the Na(+)-H+ antiporter. In MDCK4 and BHK cells, however, an increase in external Na+ produces a sigmoid activation of the system. Maximal activation of the system occur at a pHo 7.5 in LLC-PK1A cells and pHo 7.0 in MDCK4 cells. The Na(+)-H+ antiporter of LLC-PK1A cells is more sensitive to the inhibitory effect of amiloride (Ki 1.8 x 10(-7) M) than is the antiporter of MDCK4 cells (Ki 7.0 x 10(-6) M). Moreover, 5-(N-methyl-N-isobutyl)amiloride is the most effective inhibitor of Na(+)-H+ exchange in LLC-PK1A cells, but the least effective inhibitor in MDCK4 cells. Conversely, the analog, 5-(N,N-dimethyl)amiloride, is the most effective inhibitor of Na(+)-H+ exchange in MDCK4 cells, but is the least effective inhibitor in LLC-PK1A cells. These results support the hypothesis that Na(+)-H+ exchange observed in LLC-PK1A and other cell lines may represent the activity of different Na(+)-H+ antiporters.  相似文献   

7.
The kinetics of Na(+)-dependent partial reactions of the Na+,K(+)-ATPase from rabbit kidney were investigated via the stopped-flow technique, using the fluorescent labels N-(4-sulfobutyl)-4-(4-(p-(dipentylamino)phenyl)butadienyl)py ridinium inner salt (RH421) and 5-iodoacetamidofluorescein (5-IAF). When covalently labeled 5-IAF enzyme is mixed with ATP, the two labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau 1 approximately 155 s-1 for 5-IAF-labeled enzyme and 1/tau 1 approximately 200 s-1 for native enzyme (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3-->E2P(Na+)3 + ADP). The smaller amplitude slow phase, 1/tau 2 = 30-45 s-1, is attributed to the relaxation of the dephosphorylation/rephosphorylation equilibrium in the absence of K+ ions (E2P<==>E2). The Na+ concentration dependence of 1/tau 1 showed half-saturation at a Na+ concentration of 6-8 mM, with positive cooperatively involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high-affinity ATP-binding site determined from the ATP concentration dependence of 1/tau 1 was 8.0 (+/- 0.7) microM. It was found that P3-1-(2-nitrophenyl)ethyl ATP, tripropylammonium salt (NPE-caged ATP), at concentrations in the hundreds of micromolar range, significantly decreases the value of 1/tau 1, observed. This, as well as the biexponential nature of the kinetic traces, can account for previously reported discrepancies in the rates of the reactions investigated.  相似文献   

8.
KEA genes encode putative K(+) efflux antiporters that are predominantly found in algae and plants but are rare in metazoa; however, nothing is known about their functions in eukaryotic cells. Plant KEA proteins show homology to bacterial K(+) efflux (Kef) transporters, though two members in the Arabidopsis thaliana family, AtKEA1 and AtKEA2, have acquired an extra hydrophilic domain of over 500 residues at the amino terminus. We show that AtKEA2 is highly expressed in leaves, stems and flowers, but not in roots, and that an N-terminal peptide of the protein is targeted to chloroplasts in Arabidopsis cotyledons. The full-length AtKEA2 protein was inactive when expressed in yeast; however, a truncated AtKEA2 protein (AtsKEA2) lacking the N-terminal domain complemented disruption of the Na(+)(K(+))/H(+) antiporter Nhx1p to confer hygromycin resistance and tolerance to Na(+) or K(+) stress. To test transport activity, purified truncated AtKEA2 was reconstituted in proteoliposomes containing the fluorescent probe pyranine. Monovalent cations reduced an imposed pH gradient (acid inside) indicating AtsKEA2 mediated cation/H(+) exchange with preference for K(+)=Cs(+)>Li(+)>Na(+). When a conserved Asp(721) in transmembrane helix 6 that aligns to the cation binding Asp(164) of Escherichia coli NhaA was replaced with Ala, AtsKEA2 was completely inactivated. Mutation of a Glu(835) between transmembrane helix 8 and 9 in AtsKEA2 also resulted in loss of activity suggesting this region has a regulatory role. Thus, AtKEA2 represents the founding member of a novel group of eukaryote K(+)/H(+) antiporters that modulate monovalent cation and pH homeostasis in plant chloroplasts or plastids.  相似文献   

9.
GerN, a Bacillus cereus spore germination protein, exhibits homology to a widely distributed group of putative cation transporters or channel proteins. GerN complemented the Na(+)-sensitive phenotype of an Escherichia coli mutant that is deficient in Na(+)/H(+) antiport activity (strain KNabc). GerN also reduced the concentration of K(+) required to support growth of an E. coli mutant deficient in K(+) uptake (strain TK2420). In a fluorescence-based assay of everted E. coli KNabc membrane vesicles, GerN exhibited robust Na(+)/H(+) antiport activity, with a K(m) for Na(+) estimated at 1.5 mM at pH 8.0 and 25 mM at pH 7.0. Li(+), but not K(+), served as a substrate. GerN-mediated Na(+)/H(+) antiport was further demonstrated in everted vesicles as energy-dependent accumulation of (22)Na(+). GerN also used K(+) as a coupling ion without completely replacing H(+), as indicated by partial inhibition by K(+) of H(+) uptake into right-side-out vesicles loaded with Na(+). K(+) translocation as part of the antiport was supported by the stimulatory effect of intravesicular K(+) on (22)Na(+) uptake by everted vesicles and the dependence of GerN-mediated (86)Rb(+) efflux on the presence of Na(+) in trans. The inhibitory patterns of protonophore and thiocyanate were most consistent with an electrogenic Na(+)/H(+)-K(+) antiport. GerN-mediated Na(+)/H(+)-K(+) antiport was much more rapid than GerN-mediated Na(+)/H(+) antiport.  相似文献   

10.
We have recently described a novel K(+)-dependent Na(+)/Ca(2+) exchanger, NCKX2, that is abundantly expressed in brain neurons (Tsoi, M., Rhee, K.-H., Bungard, D., Li, X.-F., Lee, S.-L., Auer, R. N., and Lytton, J. (1998) J. Biol. Chem. 273, 4115--4162). The precise role for NCKX2 in neuronal Ca(2+) homeostasis is not yet clearly understood but will depend upon the functional properties of the molecule. Here, we have performed whole-cell patch clamp analysis to characterize cation dependences and ion stoichiometry for rat brain NCKX2, heterologously expressed in HEK293 cells. Outward currents generated by reverse NCKX2 exchange depended on external Ca(2+) with a K(12) of 1.4 or 101 microm without or with 1 mm Mg(2+), and on external K(+) with a K(1/2) of about 12 or 36 mm with choline or Li(+) as counter ion, respectively. Na(+) inhibited outward currents with a K(1/2) of about 60 mm. Inward currents generated by forward NCKX2 exchange depended upon external Na(+) with a K(1/2) of 30 mm and a Hill coefficient of 2.8. K(+) inhibited the inward currents by a maximum of 40%, with a K(1/2) of 2 mm or less, depending upon the conditions. The transport stoichiometry of NCKX2 was determined by observing the change in reversal potential as individual ion gradients were altered. Our data support a stoichiometry for rat brain NCKX2 of 4 Na(+):(1 Ca(2+) + 1 K(+)). These findings provide the first electrophysiological characterization of rat brain NCKX2, and the first evidence that a single recombinantly expressed NCKX polypeptide encodes a K(+)-transporting Na(+)/Ca(2+) exchanger with a transport stoichiometry of 4 Na(+):(1 Ca(2+) + 1 K(+)).  相似文献   

11.
Na(+)/H(+) antiporters are ubiquitous membrane proteins and play an important role in cell homeostasis. We amplified a gene encoding a member of the monovalent cation:proton antiporter-2 (CPA2) family (TC 2.A.37) from the Thermus thermophilus genome and expressed it in Escherichia coli. The gene product was identified as a member of the NapA subfamily and was found to be an active Na(+)(Li(+))/H(+) antiporter as it conferred resistance to the Na(+) and Li(+) sensitive strain E. coli EP432 (DeltanhaA, DeltanhaB) upon exposure to high concentration of these salts in the growth medium. Fluorescence measurements using the pH sensitive dye 9-amino-6-chloro-2-methoxyacridine in everted membrane vesicles of complemented E. coli EP432 showed high Li(+)/H(+) exchange activity at pH 6, but marginal Na(+)/H(+) antiport activity. Towards more alkaline conditions, Na(+)/H(+) exchange activity increased to a relative maximum at pH 8, where by contrast the Li(+)/H(+) exchange activity reached its relative minimum. Substitution of conserved residues D156 and D157 (located in the putative transmembrane helix 6) with Ala resulted in the complete loss of Na(+)/H(+) activity. Mutation of K305 (putative transmembrane helix 10) to Ala resulted in a compromised phenotype characterized by an increase in apparent K(m) for Na(+) (36 vs. 7.6 mM for the wildtype) and Li(+) (17 vs. 0.22 mM), In summary, the Na(+)/H(+) antiport activity profile of the NapA type transporter of T. thermophilus resembles that of NhaA from E. coli, whereas in contrast to NhaA the T. thermophilus NapA antiporter is characterized by high Li(+)/H(+) antiport activity at acidic pH.  相似文献   

12.
The particular aim of the review on some basic facets of the mechanism of Na+/K(+)-transporting ATPase (Na/K-ATPase) has been to integrate the experimental findings concerning the Na(+)- and K(+)-elicited protein conformation changes and transphosphorylations into the perspective of an allosterically regulated, phosphoryl energy transferring enzyme. This has led the authors to the following summarizing evaluations. 1. The currently dominating hypothesis on a link between protein conformation changes ('E1 in equilibrium with E2') and Na+/K+ transport (the 'Albers-Post scheme') has been constructed from a variety of partial reactions and elementary steps, which, however, do not all unequivocally support the hypothesis. 2. The Na(+)- and K(+)-elicited protein conformation changes are inducible by a variety of other ligands and modulatory factors and therefore cannot be accepted as evidence for their direct participation in effecting cation translocation. 3. There is no evidence that the 'E1 in equilibrium with E2' protein conformation changes are moving Na+ and K+ across the plasma membrane. 4. The allosterically caused ER in equilibrium with ET ('E1 in equilibrium with E2') conformer transitions and the associated cation 'occlusion' in equilibrium with 'de-occlusion' processes regulate the actual catalytic power of an enzyme ensemble. 5. A host of experimental variables determines the proportion of functionally competent ER enzyme conformers and incompetent ET conformers so that any enzyme population, even at the start of a reaction, consists of an unknown mixture of these conformers. These circumstances account for the occurrence of contradictory observations and apparent failures in their comparability. 6. The modelling of the mechanism of the Na/K-ATPase and Na+/K+ pump from the results of reductionistically designed experiments requires the careful consideration of the physiological boundary conditions. 7. Na+ and K+ ligandation of Na/K-ATPase controls the geometry and chemical reactivity of the catalytic centre in the cycle of E1 in equilibrium with E2 state conversions. This is possibly effected by hinge-bending, concerted motions of three adjacent, intracellularly exposed peptide sequences, which shape open and closed forms of the catalytic centre in lock-and-key responses. 8. The Na(+)-dependent enzyme phosphorylation with ATP and the K(+)-dependent hydrolysis of the phosphoenzyme formed are integral steps in the transport mechanism of Na/K-ATPase, but the translocations of Na+ and K+ do not occur via a phosphate-cation symport mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The Shaker B K(+) conductance (G(K)) collapses (in a reversible manner) if the membrane is depolarized and then repolarized in, 0 K(+), Na(+)-containing solutions (Gómez-Lagunas, F. 1997. J. Physiol. 499:3-15; Gómez-Lagunas, F. 1999. Biophys. J. 77:2988-2998). In this work, the role of Na(+) ions in the collapse of G(K) in 0-K(+) solutions, and in the behavior of the channels in low K(+) was studied. The main findings are as follows. First, in 0-K(+) solutions, the presence of Na(+) ions is an important factor that speeds the collapse of G(K). Second, external Na(+) fosters the drop of G(K) by binding to a site with a K(d) = 3.3 mM. External K(+) competes, in a mutually exclusive manner, with Na(o)(+) for binding to this site, with an estimated K(d) = 80 microM. Third, NMG and choline are relatively inert regarding the stability of G(K); fourth, with [K(o)(+)] = 0, the energy required to relieve Na(i)(+) block of Shaker (French, R.J., and J.B. Wells. 1977. J. Gen. Physiol. 70:707-724; Starkus, J.G., L. Kuschel, M. Rayner, and S. Heinemann. 2000. J. Gen. Physiol. 110:539-550) decreases with the molar fraction of Na(i)(+) (X(Na,i)), in an extent not accounted for by the change in Delta(mu)(Na). Finally, when X(Na,i) = 1, G(K) collapses by the binding of Na(i)(+) to two sites, with apparent K(d)s of 2 and 14.3 mM.  相似文献   

14.
(Z)-5-Methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine, AU-1421, interacted at 0 degree C with the K(+)-sensitive phosphoenzymes of three transport ATPases, Ca(2+)-, H+/K(+)- and Na+/K(+)-ATPase. In the case of Ca(2+)-ATPase, AU-1421 at about 80 microM stimulated 6-fold the rate of splitting of the phosphoenzyme, on which K+ simply functions as an accelerator from one side of the membrane. Probably AU-1421 also simply interacts with the K(+)-binding site of the phosphoenzyme that is easily accessible from the aqueous phase. In the cases of H(+)/K(+)- and Na(+)/K(+)-ATPases, AU-1421 stabilized the phosphoenzymes which accept K+ as the translocating ion. The rate constants of dephosphorylation for H(+)/K(+)-ATPase and Na(+)/K(+)-ATPase were decreased to half by AU-1421 at about 5 and 10 microM, respectively. Presumably after binding of AU-1421 to a K(+)-recognition site of the phosphoenzyme, local motion of the peptide region near the binding site that serves to move the bound ion into the ion-transport pathway (occlusion center) might be inhibited. Thus AU-1421 may be able to distinguish two modes of K+ action on the K(+)-sensitive phosphoenzymes.  相似文献   

15.
Bassilana M  Damiano E  Leblanc G 《Biochemistry》1984,23(22):5288-5294
Modifications of the kinetic properties of the Escherichia coli (RA11) Na(+) - H(+) antiport system by imposed pH gradients (deltapH, interior alkaline) and membrane potential(delta(psi), interior negative) were studied by looking at the accelerating effects of deltapH and delta on downhill Na(+) efflux from membrane vesicles incubated at different external pHs. First,variations of the Na(+) efflux rate ( VNa) as a function of imposed delta pH appear to be strongly dependent on the external pH value.The individual VN, vs. deltapH relationships observed between pH 5.5 and pH 6.6 are all nonlinear and indicate the existence of a threshold deltapH above which V(Na) increases steeply as the deltapH magnitude increases; threshold deltapH values progressively decrease as the pH is raised from 5.5 to 6.6. In contrast, at or above neutrality, V(Na) acceleration is linearly related to deltapH amplitude. Strikingly, it is shown that the deltapH-dependent variations in the Na(+) efflux rate measured in vesicles incubated at different external pHs can be accounted for by variations of internal pH; the observed relationship suggests that a high internal H(+) concentration inhibits the Na(+) -H(+) antiport activity.This inhibition results from a drastic increase in the apparent K(m), of the Na(+) efflux reaction as the internal H(+) concentration increases. On the other hand, imposed Δ increases the Na(+) efflux rate linearly by a selective modification of the V(max) value of the Na(+) efflux. Together, these data indicate that the internal H(+) concentration controls the Na(+)-H(+) antiport activity and that the chemical and electrical proton gradients affect two different kinetic steps of the Na(+)-H(+) exchange reaction.  相似文献   

16.
The effect of inhibition of Na+/K(+)-ATPase by ouabain on the arginine vasopressin (AVP)-induced increase in intracellular Na+ concentration [( Na+]i) was examined in cultured rat vascular smooth muscle cells (VSMC) by the direct measurement of [Na+]i using a fluorescent indicator dye. AVP at a concentration of 1 x 10(-9) M or higher increased [Na+]i in a dose-dependent manner in cultured rat VSMC. The preincubation of cells with 1 x 10(-4) M ouabain for 1 hr at 37 degrees C did not affect the basal [Na+]i but enhanced the 1 x 10(-6) M AVP-induced increase in [Na+]i. The preincubation was not necessary because similar results were obtained after the simultaneous administration of AVP and ouabain. The treatment with ouabain did not affect the intracellular pH changes induced by AVP. These results therefore indicate that the inhibition of Na+/K(+)-ATPase enhances the AVP-induced increase in [Na+]i by decreasing cellular Na+ efflux in cultured rat VSMC.  相似文献   

17.
The purpose of this study was to examine effects of tunicamycin (TM), which inhibits core glycosylation of the beta-subunit, on functional expression of the Na(+)-K+ pump in primary cultures of embryonic chick skeletal muscle. Measurements were made of specific-[3H]-ouabain binding, ouabain-sensitive 86Rb uptake, resting membrane potential (Em), and electrogenic pump contribution to Em (Ep) of single myotubes with intracellular microelectrodes. Growth of 4-6-day-old skeletal myotubes in the presence of TM (1 microgram/ml) for 21-24 hr reduced the number of Na(+)-K+ pumps to 60-90% of control. Na(+)-K+ pump activity, the level of resting Em and Ep were also reduced significantly by TM. In addition, TM completely blocked the hyperpolarization of Em induced in single myotubes by cooling to 10 degrees C and then re-warming to 37 degrees C. Effects of tunicamycin were compared with those of tetrodotoxin (TTX; 2 x 10(-7) M for 24 hr), which blocks voltage-dependent Na+ channels. TM produced significantly greater decreases in ouabain-binding and Em than did TTX, findings that indicate that reduced Na(+)-K+ pump expression was not exclusively secondary to decreased intracellular Na+, the primary regulator of pump synthesis in cultured muscle. Similarly, effects of TM were significantly greater than those of cycloheximide, which inhibits protein synthesis by 95%. These findings demonstrate that effects were not due to inhibition of protein synthesis. We conclude that glycosylation of the Na(+)-K+ pump beta-subunit is required for full physiological expression of pump activity in skeletal muscle.  相似文献   

18.
The aim of this study was to investigate whether endogenous superoxide anion is involved in the regulation of renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase activities. The study was performed in male Wistar rats. Compounds modulating superoxide anion concentration were infused under general anaesthesia into the abdominal aorta proximally to the renal arteries. The activity of ATPases was assayed in isolated microsomal fraction. We found that infusion of a superoxide anion-generating mixture, xanthine oxidase (1 mU/min per kg) + hypoxanthine (0.2 mumol/min per kg), increased the medullary Na(+),K(+)-ATPase activity by 49.5% but had no effect on cortical Na(+),K(+)-ATPase and either cortical or medullary ouabain-sensitive H(+),K(+)-ATPase. This effect was reproduced by elevating endogenous superoxide anion with a superoxide dismutase inhibitor, diethylthiocarbamate. In contrast, a superoxide dismutase mimetic, TEMPOL, decreased the medullary Na(+),K(+)-ATPase activity. The inhibitory effect of TEMPOL was abolished by inhibitors of nitric oxide synthase (L-NAME), soluble guanylate cyclase (ODQ) and protein kinase G (KT5823). The stimulatory effect of diethylthiocarbamate was not observed in animals pretreated with a synthetic cGMP analogue, 8-bromo-cGMP. An inhibitor of NAD(P)H oxidase, apocynin (1 mumol/min per kg), decreased the Na(+),K(+)-ATPase activity in the renal medulla and its effect was prevented by L-NAME, ODQ or KT5823. In contrast, a xanthine oxidase inhibitor, oxypurinol, administered at the same dose was without effect. These data suggest that NAD(P)H oxidase-derived superoxide anion increases Na(+),K(+)-ATPase activity in the renal medulla by reducing the availability of NO. Excessive intrarenal generation of superoxide anion may upregulate medullary Na(+),K(+)-ATPase leading to sodium retention and blood pressure elevation.  相似文献   

19.
An assay was developed to characterize the kinetic parameters of the Na(+)-K+ pump of rat erythrocytes under conditions as physiological as possible. Changes in the red cell Na+ and Rb+ content were determined in Na+ media (containing 2.5 mM inorganic phosphate (PO4) as a function of cell Na+ (2-8 mmol/l) and extracellular Rb+ (0.2-5 mM). Evaluation of the data revealed that under these conditions the Na(+)-K+ pump mediates, in addition to forward running 3 Nai+: 2 Rbo+ exchange, 1 Ki+:Rbo+ exchange and pump reversal (3 Nao+:2 Ki+ exchange). The two latter modes of Na(+)-K+ pump operation are accelerated by PO4 and lowering of cell Na+. At physiological cation and PO4 concentrations, 1Ki+:Rbo+ exchange contributes by 30-60% to total ouabain-sensitive Rb+ uptake. Thereby, the stoichiometry of ouabain-sensitive Na+ net-extrusion to Rb+ uptake is reduced to values between 1.0 and 0.5. Only at cell Na+ contents above 20 mmol/l the Na+:Rb+ stoichiometry approaches the value of 3:2 = 1.5. At certain constellations of Nai+ and Rbo+ the Na(+)-K+ pump cannot perform any net-transport of Na+ and K+ (Rb+). These equilibrium points are not far from those expected from thermodynamic considerations. The results demonstrate that in normal rat erythrocytes the reversible reaction cycle of the Na(+)-K+ pump runs in several modes of operation. The "abnormal" modes complicate the interpretation of unidirectional fluxes mediated by the Na(+)-K+ pump.  相似文献   

20.
Amiloride analogs with hydrophobic substitutions on the 5-amino nitrogen atom are relatively high affinity inhibitors of the plasma membrane Na(+)-H+ exchanger. We demonstrated that a high affinity-binding site for [3H]5-(N-methyl-N-isobutyl)amiloride ([3H]MIA) (Kd = 6.3 nM, Bmax = 1.2 pmol/mg of protein) is present in microvillus membrane vesicles but not in basolateral membrane vesicles isolated from rabbit renal cortex, in accord with the known membrane localization of the Na(+)-H+ exchanger in this tissue. The rank order potency for inhibition of microvillus membrane [3H]MIA binding by amiloride analogs was: MIA (I50 approximately 10 nM) greater than amiloride (I50 approximately 200 nM) greater than benzamil (I50 approximately 1200 nM). This correlated with a qualitatively similar rank order potency for inhibition of Na(+)-H+ exchange: MIA (I50 approximately 4 microM) greater than amiloride (I50 approximately 15 microM) greater than benzamil (I50 approximately 100 microM), but did not correlate with the rank order potency for inhibition of the organic cation-H+ exchanger in microvillus membrane vesicles: MIA approximately benzamil (I50 approximately 0.5 microM) greater than amiloride (I50 approximately 10 microM). However, tetraphenylammonium, an inhibitor of organic cation-H+ exchange, inhibited the rate of [3H]MIA binding without an effect on equilibrium [3H]MIA binding; the dissociation of bound [3H]MIA was inhibited by preloading the membrane vesicles with tetraphenylammonium. These findings indicated that high affinity [3H]MIA binding to renal microvillus membrane vesicles takes place at an internal site to which access is rate-limited by the tetraphenylammonium-sensitive organic cation transporter. Equilibrium [3H]MIA binding was inhibited by H+ but was unaffected by concentrations of Na+ or Li+ that saturate the external transport site of the Na(+)-H+ exchanger. Binding of MIA to its high affinity binding site had no effect on the rate of Na(+)-H+ exchange. This study suggests that the renal Na(+)-H+ exchanger has a high affinity internal binding site for amiloride analogs that is distinct from the external amiloride inhibitory site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号