首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Ni-mediated inhibition of human platelet adenylate cyclase by thrombin   总被引:10,自引:0,他引:10  
Cefoxitin, a poor substrate of the RTEM beta-lactamase (penicillin amido-beta-lactam hydrolase, EC 3.5.2.6), induces a reversible change in the conformation of the enzyme. The change is manifested in gradual loss of catalytic activity and increased susceptibility to proteolytic inactivation. It is prevented by antibodies, which stabilize the native conformation. By contrast, divalent cations, which have no effect on the native enzyme, delay recovery from the cefoxitin-induced state, presumably by reacting with sites made accessible in the partly unfolded enzyme. Prolonged exposure to excess of cefoxitin causes a similar delay. The kinetic evidence, namely, the initial burst of consumption of cefoxitin and the subsequent gradual recovery of activity with better substrates, appears to be consistent with acylation of the active site by cefoxitin followed by a slower deacylation step [Fisher et al. (1980) Biochemistry 19, 2895-2901]. However, additional evidence leads us to conclude that the kinetics observed reflect deformation of the active site, rather than its blockage, by cefoxitin. Of most significance is the transient change in specificity, i. e. a preferential interaction of the recovering enzyme with substrates which are closest in structure to cefoxitin.  相似文献   

2.
Protein kinase C sensitizes olfactory adenylate cyclase   总被引:2,自引:1,他引:2  
Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory sensitivity.  相似文献   

3.
Human platelet adenylate cyclase is stimulated by prostaglandin E1 (PGE1) and is inhibited by epinephrine via alpha-adrenoceptors. Both agonists, epinephrine more than PGE1, increase the activity of a low Km GTPase in platelet membranes. Pretreatment of intact platelets or platelet membranes with the sulfhydryl reagent, N-ethylmaleimide (NEM), abolished the inhibition of the adenylate cyclase and the concomitant stimulation of the GTPase by epinephrine. In contrast, stimulation of the adenylate cyclase by PGE1 was not affected or even increased by NEM pretreatment; only at high NEM concentrations were both basal and PGE1-stimulated activities decreased. Similarly, the PGE1-induced activation of the low Km GTPase was not or was only partially reduced by NEM. Adenylate cyclase activation by stable GTP analogs, NaF, and cholera toxin was also not decreased by NEM pretreatment. Exposure of intact platelets to NEM did not reduce alpha-adrenoceptor number and affinities for agonists and antagonists, as determined by [3H]yohimbine binding in platelet particles. The data indicate that NEM uncouples alpha-adrenoceptor-mediated inhibition of platelet adenylate cyclase, leaving the receptor recognition site and the adenylate cyclase itself relatively intact. Although the effect of NEM may be based on a reaction with the alpha-adrenoceptor site interacting with a coupling component, the selective loss of the adenylate cyclase inhibition together with an even increased stimulation of the enzyme by PGE1 suggests that there are two at least partially distinct regulatory sites involved in opposing hormonal regulations of adenylate cyclase activity, with that involved in hormonal inhibition being highly susceptible to inactivation by NEM.  相似文献   

4.
Protein kinase D1 (PKD1) plays a vital role in signal transduction, cell proliferation, membrane trafficking, and cancer; however, the majority of the studies up to date had centered primarily on PKD1 functions in interphase, very little is known about its role during cell division. We previously demonstrated that during mitosis PKD1 is activated and associated with centrosomes, spindles, and midbodies. However, these observations did not address whether PKD1 was associated with mitosis regulation. Accordingly, we used rapidly acting PKD-specific inhibitors to examine the contribution of PKD1 the sequence of events in mitosis. We found that although PKD1 overexpression did not affect mitosis progression, suppression of its catalytic activity by two structurally unrelated inhibitors (kb NB 142-70 and CRT 0066101) induced a significant delay in metaphase to anaphase transition time. PKD1 inhibition during mitosis also produced the appearance of abnormal spindles, defects in chromosome alignment, and segregation as well as apoptosis. Thus, these observations indicate that PKD1 activity is associated with mitosis regulation.  相似文献   

5.
Modulation of adenylate cyclase in human keratinocytes by protein kinase C   总被引:3,自引:0,他引:3  
Adenylate cyclase (ATP-pyrophosphate lyase (cyclizing); EC 4.6.1.1) in the human keratinocyte cell line SCC 12F was potentiated by 12-O-tetradecanoyl-phorbol-13-acetate (TPA), phorbol-12,13-diacetate, and 1,2-dioctanoylglycerol. Keratinocytes exposed to TPA showed a 2-fold enhancement of adenylate cyclase activity when assayed in the presence of isoproterenol or GTP. The half-maximal effective concentration (EC50) for both isoproterenol and GTP were unaltered by TPA treatment of the cells. Basal adenylate cyclase activity in membranes from TPA-treated cultures was also increased 2-fold relative to activity in control membranes. Potentiation of adenylate cyclase activity was dependent on the concentration of TPA to which the keratinocytes were exposed (EC50 for TPA = 3 nM). TPA actions on adenylate cyclase were maximal after 15 min of incubation of the cells with the compound, correlating well with the time course of translocation of protein kinase C (Ca2+/phospholipid-dependent enzyme) from cytosol to membrane. The action of cholera toxin on adenylate cyclase was additive with TPA. In contrast, pertussis toxin actions on adenylate cyclase were not additive with TPA. Treatment of control cells with pertussis toxin activated adenylate cyclase 1.5-fold, whereas cells exposed to pertussis toxin for 6 h followed by TPA for 15 min showed the same 2-fold increase in adenylate cyclase activity as observed in membranes from cells exposed to TPA without prior exposure to pertussis toxin. Pertussis toxin catalyzed ADP-ribosylation was increased 2-fold in membranes from SCC 12F cells exposed to TPA, indicating an increase in the alpha beta gamma form of Gi. These data suggest that exposure of human keratinocytes to phorbol esters increases adenylate cyclase activity by a protein kinase C-mediated increase in the heterotrimeric alpha beta gamma form of Gi resulting in decreased inhibition of basal adenylate cyclase activity.  相似文献   

6.
Adenylate cyclase inhibition by stable GTP analogs and their interaction with epinephrine were studied in human platelet membranes. Whereas basal enzyme activity was increased by these nucleotides, the stable GTP analogs decreased the adenylate cyclase activity stimulated by fluoride or forskolin by maximally 60 to 70%, with the potency order, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) greater than guanyl-5'-ylimidodiphosphate greater than guanyl-5'-ylmethylenediphosphate. The inhibition of the forskolin-stimulated enzyme by GTP gamma S was half-maximal at about 4 nM, occurred after a time lag period, which was inversely related to the GTP gamma S concentration, and was resistant to washing of the membranes. Prostaglandin E1-stimulated activity exhibited a biphasic response towards GTP gamma S, with activation occurring at low (1 nM) and inhibition at higher GTP gamma S concentrations. The inhibitory effect of GTP gamma S was competitively antagonized by GTP. This antagonism was prevented by epinephrine, which inhibited the stimulated platelet adenylate cyclase in the presence of GTP to the same degree as observed with GTP gamma S alone. In the absence of GTP, epinephrine largely diminished the time lag required for the inhibitory action of GTP gamma S. Furthermore, the decrease in final activity induced by GTP gamma S was amplified by epinephrine. Whereas the acceleration of the inhibitory action of GTP gamma S was observed at low and high GTP gamma S concentrations, the amplification by epinephrine was observed only at submaximally effective concentrations of GTP gamma S.  相似文献   

7.
Exposure of the alpha-adrenergic receptor of the human platelet to agonist prior to solubilization stabilizes a receptor complex of the alpha-adrenergic receptor with the GTP-binding protein(s) which modulates receptor affinity for agonists (Smith, S. K., and Limbird, L. E. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4026-4030). The soluble alpha-adrenergic receptor is characterized by retention of sensitivity to GTP and a faster rate of sedimentation in sucrose gradients than antagonist-occupied or unoccupied receptors. The present studies were undertaken to determine whether the alpha-adrenergic receptor, which is coupled to inhibition of adenylate cyclase, contains the same GTP-binding protein that is involved in activation of adenylate cyclase. The GTP-binding protein that is coupled to activation of adenylate cyclase was labeled with [32P]ADP-ribose using cholera toxin. Incorporation of [32]ADP-ribose into a Mr = 42,000 peptide in human platelet membranes was paralleled by an enhancement of GTP-sensitive catalytic activity in the membranes. However, cholera toxin treatment did not modify alpha-receptor-mediated inhibition of adenylate cyclase or interaction of the alpha-receptor with agonist agents. Moreover, sucrose gradient centrifugation revealed that the [32P]ADP-ribosylated Mr = 42,000 subunit of the stimulatory GTP-binding protein did not appear to associate with the agonist-alpha-receptor complex. These data suggest that the GTP-binding protein that mediates GTP activation of adenylate cyclase in the human platelet membrane is distinct from the GTP-binding protein that modulates alpha-adrenergic receptor affinity for agonist agents and which associates with the receptor in the presence of agonists.  相似文献   

8.
Human platelet membrane proteins were phosphorylated by exogenous, partially purified Ca2+-activated phospholipid-dependent protein kinase (protein kinase C). The phosphorylation of one of the major substrates for protein kinase C (Mr = 41 000) was specifically suppressed by the beta subunit of the inhibitory guanine-nucleotide-binding regulatory component (Gi, Ni) of adenylate cyclase. The free alpha subunit of Gi (Mr = 41 000) also served as an excellent substrate for the kinase (greater than 0.5 mol phosphate incorporated per mol of subunit), but the Gi oligomer (alpha X beta X gamma) did not. Treatment of cyc- S49 lymphoma cells, which are deficient in Gs/Ns (the stimulatory component) but contain functional Gi/Ni, with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a potent activator of protein kinase C, did not alter stimulation of adenylate cyclase catalytic activity by forskolin, whereas the Gi/Ni-mediated inhibition of the cyclase by the hormone, somatostatin, was impaired in these membranes. The results suggest that the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory component of adenylate cyclase may be a physiological substrate for protein kinase C and that the function of the component in transducing inhibitory hormonal signals to adenylate cyclase is altered by its phosphorylation.  相似文献   

9.
Activation of adipocyte adenylate cyclase by protein kinase C   总被引:5,自引:0,他引:5  
Adenylate cyclase activity in purified rat adipocyte membranes is stimulated by the calcium- and phospholipid-dependent enzyme protein kinase C. Over the concentration range of 100-1000 milliunits/ml, both highly purified (approximately 3000 units/mg of protein) protein kinase C from rat brain and partially purified (14 units/mg of protein) protein kinase C from guinea pig pancreas stimulate cyclase activity. The actions of both protein kinase C preparations on adenylate cyclase activity are dependent on added calcium, which is effective at concentrations less than 10 microM. Exogenous phospholipids are not required for stimulation of adenylate cyclase by protein kinase C; but, under typical cyclase assay conditions, the adipocyte membranes satisfy the lipid requirement for protein kinase C phosphorylation of histone. The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate enhances the kinase action on cyclase, and the phorbol ester is effective at concentrations equimolar with the kinase (less than 10 nM). With the brain protein kinase C, 12-O-tetradecanoylphorbol-13-acetate effects are especially evident at limiting calcium concentrations. Inhibitors of protein kinase C activity, such as chlorpromazine, palmitoylcarnitine, and polymyxin B, inhibit selectively that adenylate cyclase activity which is stimulated by protein kinase C plus calcium. It is concluded that protein kinase C acts directly on the adipocyte adenylate cyclase system.  相似文献   

10.
Gossypol, a polyphenolic binaphthalene -dialdehyde reputed to exert contraceptive action in males, reversibly inhibits adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] in a concentration-dependent manner. In membranes prepared from a variety of organs, the half-maximal inhibitory concentration (IC50) ranges from 75 microM (rat Leydig tumor cells) to 250 microM (rat liver membranes). Kinetic studies using partially purified catalytic subunit isolated from bovine testis show that gossypol is competitive with ATP with an apparent Ki of 110 microM. These data suggest that gossypol inhibition of adenylate cyclase is due to direct interaction at the nucleotide-binding domain of the catalytic subunit of the enzyme.  相似文献   

11.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity when the enzyme was assayed in the presence of Mg2+. The basal and prostaglandin E1-stimulated adenylate cyclase activities were also increased by washing, which presumably removes endogenous GTP. The analog, guanyl-5′-yl-imidodiphosphate mimics the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase activity but it stimulates basal enzyme activity. The onset of the inhibitory effect of GTP on the adenylate cyclase system is rapid (1 min) and is maintained at a constant rate during incubation for 10 min. GTP and guanyl-5′-yl-imidodiphosphate were noncompetitive inhibitors of prostaglandin E1. An increase in the concentration of Mg2+ gradually reduces the effect of GTP while having little influence on the effect of guanyl-5′-yl-imidodiphosphate. Neither the substrate concentration nor the pH (7.2–8.5) is related to the inhibitory effect of guanine nucleotides. The inhibition by nucleotides was found to show a specificity for purine nucleotides with the order of potency being guanyl-5′-yl-imidodiphosphate > dGTP > GTP > ITP > XTP > CTP > TTP. The inhibitory effect of GTP is reversible while the effect of guanyl-5′-yl-imidodiphosphate is irreversible. The GTP inhibitory effect was abolished by preparing the lysates in the presence of Ca2+. However, the inhibitory effect of guanyl-5′-yl-imidodiphosphate persisted. Substitution of Mn2+ for Mg2+ in the assay medium resulted in a diminution of the inhibitory effect of GTP on basal activity and converted the inhibitory effect of GTP on prostaglandin E1-stimulated activity to a stimulatory effect. At a lower concentration of Mn2+ (less than 2 mM) guanyl-5′-yl-imidodiphosphate inhibited prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occuring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase.  相似文献   

12.
The mechanism of calmodulin dependent regulation of adenylate cyclase has been studied in human platelet membranes. Calmodulin activated adenylate cyclase exhibited a biphasic response to both Mg2+ and Ca2+. A stimulatory effect of Mg2 on adenylate cyclase was observed at all Mg2+ concentrations employed, although the degree of activation by calmodulin was progressively decreased with increasing concentrations of Mg2+. These results demonstrate that the Vmax of calmodulin dependent platelet adenylate cyclase can be manipulated by varying the relative concentrations of Mg2+ and Ca2+. The activity of calmodulin stimulated adenylate cyclase was always increased 2-fold above respective levels of activity induced by GTP, Gpp(NH)p and/or PGE. The stimulatory influence of calmodulin was not additive but synergistic to the effects of PGE1, GTP and Gpp(NH)p. GDP beta S inhibited GTP-and Gpp(NH)p stimulation of adenylate cyclase but was without effect on calmodulin stimulation. Since the inhibitory effects of GDP beta S have been ascribed to apparent reduction of active N-protein-catalytic unit (C) complex formation, these results suggest that the magnitude of calmodulin dependent adenylate cyclase activity is proportional to the number of N-protein-C complexes, and that calmodulin interacts with preformed N-protein-C complex to increase its catalytic turnover. Our data do not support existence of two isoenzymes of adenylate cyclase (calmodulin sensitive and calmodulin insensitive) in human platelets.  相似文献   

13.
14.
Prostaglandin D2 (PGD2) is one of several prostaglandins that can inhibit platelet aggregation and activate adenylate cyclase. Platelets were exposed to varying concentrations of PGD2, washed, and the adenylate cyclase response to prostaglandins, epinephrine, and sodium fluoride determined. Incubating platelets with 5 × 10?5 M PGD2 for 2 hr resulted in a 45% decrease in PGD2 activation of adenylate cyclase and a 25% decrease in stimulation by PGE1. Fluoride activation (7-fold) epinephrine inhibition (30%) and basal enzyme activity were unchanged by exposure of the platelets to PGD2. Desensitization was concentration dependent, with loss of enzyme activity first noted when platelets were incubated with 10?7 M PGD2. Enzyme sensitivity could be partially restored when desensitized platelets were washed free of PGD2 and incubated in buffer for 2 hr; complete resensitization required incubation for 24 hr in plasma. Regulation of prostaglandin sensitive platelet adenylate cyclase could be of importance in mediating the response of platelets to aggregating agents.  相似文献   

15.
Modulation of human platelet adenylate cyclase by prostacyclin (PGX).   总被引:51,自引:0,他引:51  
Prostacyclin (PGX) (57)-9-deoxy-6,9alpha-epoxy-delta5-PGF1alpha has been found to be a potent stimulator of cAMP accumulation in platelets than PGE1. The prostacyclin stimulation of platelet cAMP accumulation can be antagonized by the prostaglandin endoperoxide PGH2, and a PGH2-induced platelet aggregation is antagonized by prostacyclin. A model of platelet homeostasis is proposed that suggests platelet aggregation is controlled by a balance between the adenylate cyclase stimulating activity of prostacyclin, and the cAMP lowering activity of PGH2.  相似文献   

16.
Prostacyclin (PGX) (5Z)-9-deoxy-6,9α-epoxy5-PGF has been found to be a potent stimulator of cAMP accumulation in human platelet rich plasma (PRP), and a direct stimulator of platelet microsome adenylate cyclase. Prostacyclin is, on a molar basis, at least 10 times more potent a stimulator of cAMP accumulation in platelets than PGE1. The prostacyclin stimulation of platelet cAMP accumulation can be antagonized by the prostaglandin endoperoxide PGH2, and a PGH2-induced platelet aggregation is antagonized by prostacyclin. A model of platelet homeostasis is proposed that suggests platelet aggregation is controlled by a balance between the adenylate cyclase stimulating activity of prostacyclin, and the cAMP lowering activity of PGH2.  相似文献   

17.
The latent cysteine proteinase present in ascitic fluid of patients with neoplasia and released from ascites cells in culture has been partially purified and the enzyme after pepsin activation was shown to be immunologically related to the lysosomal proteinase, cathepsin B. The latent form was characterized as a single chain of Mr 40 000 as determined by SDS-polyacrylamide gel electrophoresis under reducing conditions followed by Western blotting and immune staining with an antiserum to human cathepsin B. Using the same techniques the enzyme after pepsin activation gave a single band of Mr 33 000. Analysis by isoelectric focusing showed that the latent enzyme before and after pepsin treatment is composed of several acidic isoenzymes. These findings suggest that this latent proteinase represents a precursor form of cathepsin B which is released extracellularly rather than being processed and directed to the lysosome.  相似文献   

18.
Prostaglandin D2 (PGD2) is one of several prostaglandins that can inhibit platelet aggregation and activate adenylate cyclase. Platelets were exposed to varying concentrations of PGD2 washed, and the adenylate cyclase response to prostaglandins, epinephrine, and sodium fluoride determined. Incubating platelets with 5 x 10(-5) M PGD2 for 2 hr resulted in a 45% decrease in PGD2 activation of adenylate cyclase and a 25% decrease in stimulation by PGE1. Fluoride activation (7-fold) epinephrine inhibition (30%) and basal enzyme activity were unchanged by exposure of the platelets to PGD2. Desensitization was concentration dependent, with loss of enzyme activity first noted when platelets were incubated with 10(-7) M PGD2. Enzyme sensitivity could be partially restored when desensitized platelets were washed free of PGD2 and incubated in buffer for 2 hr; complete resensitization required incubation for 24 hr in plasma. Regulation of prostaglandin sensitive platelet adenylate cyclase could be of importance in mediating the response of platelets to aggregating agents.  相似文献   

19.
The stimulatory and inhibitory effects of adenosien of the adenylate cyclases of human and pig platelets were studied. Stimulation occurred at lower concentrations than did inhibition, and stimulatory effect was prevented by methylxanthines. Stimulation by adenosine was immediate in onset and was reversible, under conditions when cyclic AMP formation was linear with respect to time and protein concentration.The stimulatory and inhibitory effects could be distinguished further by the use of various analogues of adenosine and could be prevented by adenosine deaminase. The data suggest that both stimulation and inhibition were due to adenosine itself and not one of its degradation products and that in the platelet preparation, neither formation nor degradation of adenosine during the adenylate cyclase incubation appreciably influenced measured activity.Stimulation by adenosine was additive with the effects of GMP-P(NH)P, and α- or β-adrenergic stimulation, but was abolished by prostaglandin E1 or by NaF. Prostaglandin E1 and NaF increased the sensitivity of adenylate cyclase to inhibition by adenosine. The data suggests that guanly-5′-yl(β-γ imino)diphosphate and/or adrenergic stimulation and adenosine exert their effects on adenylate cyclase by distinct mechanisms, but that prostaglandin E1 or F? and adenosine increase enzyme activity by mechanisms which may involve common intermediates in the coupling to adenylate cyclase.  相似文献   

20.
The protein kinase C stimulator TPA (12-O-tetradecanoyl phorbol-13-acetate) enhanced the responsiveness of adenylate cyclase to IPR (isoproterenol) and PGE1 (prostaglandin E1) in quiescent tsKSV-NRK cells at the nonpermissive 41 degrees C. Reactivating the thermolabile mitogenic/oncogenic K-ras protein in tsKSV-NRK cells by dropping the temperature to 36 degrees C also enhanced the responsiveness of adenylate cyclase to IPR and PGE1. The enhancement was transient and peaked at 6 hours after the temperature shift. This enhanced responsiveness was specifically due to the reactivated viral K-ras protein rather than the temperature shift because the same temperature shift did not affect adenylate cyclase responsiveness in uninfected NRK cells, nor was it a result of the mitogenic stimulus since reacting the mitogenic pp60v-src protein in tsASV-NRK cells did not affect adenylate cyclase responsiveness. The increased responsiveness of adenylate cyclase at 6 hours after the temperature shift was not a result of elevated membrane-associated PKC activity. However, the reactivated viral K-ras protein strongly increased the stimulability of membrane-associated PKC by TPA and it further increased TPA's ability to enhance the responsiveness of adenylate cyclase to IPR and PGE1. Thus, a viral K-ras protein and membrane-associated protein kinase C can cooperate to increase the responsiveness of adenylate cyclase to agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号