首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophages play crucial roles in repair process of various tissues. However, the details in the role of macrophages during bone repair still remains unknown. Herein, we examined the contribution of the tissue fibrinolytic system to the macrophage functions in bone repair after femoral bone defect by using male mice deficient in plasminogen (Plg –/–), urokinase-type plasminogen activator (uPA –/–) or tissue-type plasminogen activator (tPA –/–) genes and their wild-type littermates. Bone repair of the femur was delayed in uPA –/– mice until day 6, compared with wild-type (uPA +/+) mice. Number of Osterix-positive cells and vessel formation were decreased in uPA –/– mice at the bone injury site on day 4, compared with those in uPA +/+ mice. Number of macrophages and their phagocytosis at the bone injury site were reduced in uPA –/– and Plg –/–, but not in tPA –/– mice on day 4. Although uPA or plasminogen deficiency did not affect the levels of cytokines, including TNF-α, IL-1β, IL-6, IL-4 and IFN-γ mRNA in the damaged femur, the elevation in CCL3 mRNA levels was suppressed in uPA –/– and Plg –/–, but not in tPA –/– mice. Neutralization of CCL3 antagonized macrophage recruitment to the site of bone injury and delayed bone repair in uPA +/+, but not in uPA –/– mice. Our results provide novel evidence that the tissue fibrinolytic system contributes to the induction of macrophage recruitment and CCL3 at the bone injury site, thereby, leading to the enhancement of the repair process.  相似文献   

2.
Although macrophages are thought to play important roles in tissue repair, the molecular mechanisms involved remain to be elucidated. Mice deficient in urokinase-type plasminogen activator (uPA-/-) exhibit decreased accumulation of macrophages following muscle injury and severely impaired muscle regeneration. We tested whether macrophage-derived uPA plays essential roles in macrophage chemotaxis and skeletal muscle regeneration. Macrophage uPA was required for chemotaxis, even when invasion through matrix was not necessary. The mechanism by which macrophage uPA promoted chemotaxis was independent of receptor binding but appeared to depend on proteolytic activity. Exogenous uPA restored chemotaxis to uPA-/- macrophages and rescued muscle regeneration in uPA-/- mice. Macrophage depletion in wild-type (WT) mice using clodronate liposomes resulted in impaired muscle regeneration, confirming that macrophages are required for efficient healing. Furthermore, transfer of WT bone marrow cells to uPA-/- mice restored macrophage accumulation and muscle regeneration. In this rescue, transferred WT cells appeared to contribute to IGF-1 expression but did not fuse to regenerating fibers. These data indicate that WT leukocytes, including macrophages, that express uPA were sufficient to rescue muscle regeneration in uPA-/- mice. Overall, the results indicate that uPA plays a fundamental role in macrophage chemotaxis and that macrophage-derived uPA promotes efficient muscle regeneration.  相似文献   

3.
The hypothesis of this study was the urokinase-type plasminogen activator receptor (uPAR) is required for accumulation of inflammatory cells in injured skeletal muscle and for efficient muscle regeneration. Expression of uPAR was elevated at 1 and 3 days after cardiotoxin-induced muscle injury in wild-type mice before returning to baseline levels. Neutrophil accumulation peaked 1 day postinjury in muscle from both wild-type (WT) and uPAR null mice, while macrophage accumulation peaked between 3 and 5 days postinjury, with no differences between strains. Histological analyses confirmed efficient muscle regeneration in both wild-type and uPAR null mice, with no difference between strains in the formation or growth of regenerating fibers, or recovery of normal morphology. Furthermore, in vitro experiments demonstrated that chemotaxis is not different between WT and uPAR null macrophages. Finally, fusion of cultured satellite cells into multinucleated myotubes was not different between cells isolated from WT and uPAR null mice. These results demonstrate that uPAR is not required for the accumulation of inflammatory cells or the regeneration of skeletal muscle following injury, suggesting uPA can act independently of uPAR to regulate events critical for muscle regeneration.  相似文献   

4.
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive interstitial scarification. A hallmark morphological lesion is the accumulation of myofibroblasts or fibrotic lung fibroblasts (FL-fibroblasts) in areas called fibroblastic foci. We previously demonstrated that the expression of both urokinase-type plasminogen activator (uPA) and the uPA receptor are elevated in FL-fibroblasts from the lungs of patients with IPF. FL-fibroblasts isolated from human IPF lungs and from mice with bleomycin-induced pulmonary fibrosis showed an increased rate of proliferation compared with normal lung fibroblasts (NL-fibroblasts) derived from histologically “normal” lung. Basal expression of plasminogen activator inhibitor-1 (PAI-1) in human and murine FL-fibroblasts was reduced, whereas collagen-I and α-smooth muscle actin were markedly elevated. Conversely, alveolar type II epithelial cells surrounding the fibrotic foci in situ, as well as those isolated from IPF lungs, showed increased activation of caspase-3 and PAI-1 with a parallel reduction in uPA expression. Transduction of an adenovirus PAI-1 cDNA construct (Ad-PAI-1) suppressed expression of uPA and collagen-I and attenuated proliferation in FL-fibroblasts. On the contrary, inhibition of basal PAI-1 in NL-fibroblasts increased collagen-I and α-smooth muscle actin. Fibroblasts isolated from PAI-1-deficient mice without lung injury also showed increased collagen-I and uPA. These changes were associated with increased Akt/phosphatase and tensin homolog proliferation/survival signals in FL-fibroblasts, which were reversed by transduction with Ad-PAI-1. This study defines a new role of PAI-1 in the control of fibroblast activation and expansion and its role in the pathogenesis of fibrosing lung disease and, in particular, IPF.  相似文献   

5.
Complex DNA viruses have tapped into cellular serpin responses that act as key regulatory steps in coagulation and inflammatory cascades. Serp-1 is one such viral serpin that effectively protects virus-infected tissues from host inflammatory responses. When given as purified protein, Serp-1 markedly inhibits vascular monocyte invasion and plaque growth in animal models. We have investigated mechanisms of viral serpin inhibition of vascular inflammatory responses. In vascular injury models, Serp-1 altered early cellular plasminogen activator (tissue plasminogen activator), inhibitor (PAI-1), and receptor (urokinase-type plasminogen activator) expression (p < 0.01). Serp-1, but not a reactive center loop mutant, up-regulated PAI-1 serpin expression in human endothelial cells. Treatment of endothelial cells with antibody to urokinase-type plasminogen activator and vitronectin blocked Serp-1-induced changes. Significantly, Serp-1 blocked intimal hyperplasia (p < 0.0001) after aortic allograft transplant (p < 0.0001) in PAI-1-deficient mice. Serp-1 also blocked plaque growth after aortic isograft transplant and after wire-induced injury (p < 0.05) in PAI-1-deficient mice indicating that increase in PAI-1 expression is not required for Serp-1 to block vasculopathy development. Serp-1 did not inhibit plaque growth in uPAR-deficient mice after aortic allograft transplant. We conclude that the poxviral serpin, Serp-1, attenuates vascular inflammatory responses to injury through a pathway mediated by native uPA receptors and vitronectin.  相似文献   

6.
Mice deficient in plasminogen, the precursor of plasmin, show completely arrested healing of tympanic membrane (TM) perforations, indicating that plasmin plays an essential role in TM healing. The activation of plasminogen to plasmin is performed by two plasminogen activators (PAs), urokinase-type PA (uPA) and tissue-type PA (tPA). To elucidate the functional roles of PAs in the healing of TM perforations, we investigated the phenotypes of single gene-deficient mice lacking uPA (uPA−/−) or tPA (tPA−/−) after TM perforation. Delayed healing of TM perforations was observed in uPA−/− mice but not tPA−/− mice. The migration of keratinocytes was clearly delayed and seemed to be misoriented in uPA−/− mice. Furthermore, fibrin deposition and the inflammatory response were persistent in these mice. Our findings demonstrate that uPA plays a role in the healing of TM perforations. The observed phenotypes in uPA−/− mice are most likely due to the reduced generation of plasmin.  相似文献   

7.
Macrophages (Mp) and the plasminogen system play important roles in tissue repair following injury. We hypothesized that Mp-specific expression of urokinase-type plasminogen activator (uPA) is sufficient for Mp to migrate into damaged muscle and for efficient muscle regeneration. We generated transgenic mice expressing uPA only in Mp, and we assessed the ability of these mice to repair muscle injury. Mp-only uPA expression was sufficient to induce wild-type levels of Mp accumulation, angiogenesis, and new muscle fiber formation. In mice with wild-type uPA expression, Mp-specific overexpression further increased Mp accumulation and enhanced muscle fiber regeneration. Furthermore, Mp expression of uPA regulated the level of active hepatocyte growth factor, which is required for muscle fiber regeneration, in damaged muscle. In vitro studies demonstrated that uPA promotes Mp migration through proteolytic and nonproteolytic mechanisms, including proteolytic activation of hepatocyte growth factor. In summary, Mp-derived uPA promotes muscle regeneration by inducing Mp migration, angiogenesis, and myogenesis.  相似文献   

8.
9.
Rapid fibrovascularization is a prerequisite for successful biomaterial engraftment. In addition to their well-known roles in fibrinolysis, urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA) or their inhibitor plasminogen activator inhibitor-1 (PAI-1) have recently been implicated as individual mediators in non-fibrinolytic processes, including cell adhesion, migration, and proliferation. Since these events are critical for fibrovascularization of biomaterial, we hypothesized that the components of the plasminogen activation system contribute to biomaterial engraftment. Employing in vivo and ex vivo microscopy techniques, vessel and collagen network formation within porous polyethylene (PPE) implants engrafted into dorsal skinfold chambers were found to be significantly impaired in uPA-, tPA-, or PAI-1-deficient mice. Consequently, the force required for mechanical disintegration of the implants out of the host tissue was significantly lower in the mutant mice than in wild-type controls. Conversely, surface coating with recombinant uPA, tPA, non-catalytic uPA, or PAI-1, but not with non-catalytic tPA, accelerated implant vascularization in wild-type mice. Thus, uPA, tPA, and PAI-1 contribute to the fibrovascularization of PPE implants through common and distinct effects. As clinical perspective, surface coating with recombinant uPA, tPA, or PAI-1 might provide a novel strategy for accelerating the vascularization of this biomaterial.  相似文献   

10.
Plasminogen activator inhibitor-1 (PAI-1)-deficient transgenic mice have improved survival and less fibrosis after intratracheal bleomycin instillation. We hypothesize that PAI-1 deficiency limits scarring through unopposed plasminogen activation. If this is indeed true, then we would expect increased urokinase-type plasminogen activator (uPA) expression to result in a similar reduction in scarring and improvement in mortality. To test our hypothesis, using the tetracycline gene regulatory system, we have generated a transgenic mouse model with the features of inducible, lung-specific uPA production. After doxycycline administration, these transgenic animals expressed increased levels of uPA in their bronchoalveolar lavage (BAL) fluid that accelerated intrapulmonary fibrin clearance. Importantly, this increased plasminogen activator production led to a reduction in both lung collagen accumulation and mortality after bleomycin-induced injury. These results suggest that PAI-1 deficiency does protect against the effects of bleomycin-induced lung injury through unopposed plasmin generation. By allowing the manipulation of plasminogen activation at different phases of the fibrotic process, this model will serve as a powerful tool in further investigations into the pathogenesis of pulmonary fibrosis.  相似文献   

11.
Skeletal muscle regeneration comprises several overlapping cellular processes, including inflammation and myogenesis. Prostaglandins (PGs) may regulate muscle regeneration, because they modulate inflammation and are involved in various stages of myogenesis in vitro. PG synthesis is catalyzed by different isoforms of cyclooxygenase (COX), which are inhibited by nonsteroidal anti-inflammatory drugs. Although experiments employing nonsteroidal anti-inflammatory drugs have implicated PGs in tissue repair, how PGs regulate muscle regeneration remains unclear, and the potentially distinct roles of different COX isoforms have not been investigated. To address these questions, a localized freeze injury was induced in the tibialis anterior muscles of mice chronically treated with either a COX-1- or COX-2-selective inhibitor (SC-560 and SC-236, respectively), starting before injury. The size of regenerating myofibers was analyzed at time points up to 5 wk after injury and found to be decreased by SC-236 and in COX-2–/– muscles, but unaffected by SC-560. In contrast, SC-236 had no effect on myofiber growth when administered starting 7 days after injury. The attenuation of myofiber growth by SC-236 treatment and in COX-2–/– muscles is associated with decreases in the number of myoblasts and intramuscular inflammatory cells at early times after injury. Together, these data suggest that COX-2-dependent PG synthesis is required during early stages of muscle regeneration and thus raise caution about the use of COX-2-selective inhibitors in patients with muscle injury or disease. prostaglandins; nonsteroidal anti-inflammatory drugs; muscle growth; inflammation; satellite cells  相似文献   

12.
Alveolar type II (ATII) cell apoptosis and depressed fibrinolysis that promotes alveolar fibrin deposition are associated with acute lung injury (ALI) and the development of pulmonary fibrosis (PF). We therefore sought to determine whether p53-mediated inhibition of urokinase-type plasminogen activator (uPA) and induction of plasminogen activator inhibitor-1 (PAI-1) contribute to ATII cell apoptosis that precedes the development of PF. We also sought to determine whether caveolin-1 scaffolding domain peptide (CSP) reverses these changes to protect against ALI and PF. Tissues as well as isolated ATII cells from the lungs of wild-type (WT) mice with BLM injury show increased apoptosis, p53, and PAI-1, and reciprocal suppression of uPA and uPA receptor (uPAR) protein expression. Treatment of WT mice with CSP reverses these effects and protects ATII cells against bleomycin (BLM)-induced apoptosis whereas CSP fails to attenuate ATII cell apoptosis or decrease p53 or PAI-1 in uPA-deficient mice. These mice demonstrate more severe PF. Thus p53 is increased and inhibits expression of uPA and uPAR while increasing PAI-1, changes that promote ATII cell apoptosis in mice with BLM-induced ALI. We show that CSP, an intervention targeting this pathway, protects the lung epithelium from apoptosis and prevents PF in BLM-induced lung injury via uPA-mediated inhibition of p53 and PAI-1.  相似文献   

13.
Adult skeletal muscle possesses remarkable potential for growth in response to mechanical loading; however, many of the cellular and molecular mechanisms involved remain undefined. The hypothesis of this study was that the extracellular serine protease, urokinase-type plasminogen activator (uPA), is required for muscle hypertrophy, in part by promoting macrophage accumulation in muscle subjected to increased mechanical loading. Compensatory muscle hypertrophy was induced in mouse plantaris (PLT) muscles by surgical ablation of synergist muscles. Following synergist ablation, PLT muscles in wild-type mice demonstrated edema and infiltration of neutrophils and macrophages but an absence of overt muscle fiber damage. Sham procedures resulted in no edema or accumulation of inflammatory cells. In addition, synergist ablation was associated with a large increase in activity of uPA in the PLT muscle. uPA-null mice demonstrated complete abrogation of compensatory hypertrophy associated with reduced macrophage accumulation, indicating that uPA is required for hypertrophy. Macrophages isolated from wild-type PLT muscle during compensatory hypertrophy expressed uPA and IGF-I, both of which may contribute to hypertrophy. To determine whether macrophages are required for muscle hypertrophy, clodronate liposomes were administered to deplete macrophages in wild-type mice; this resulted in reduced muscle hypertrophy. Decreased macrophage accumulation was associated with reduced cell proliferation but did not alter signaling through the mammalian target of rapamycin pathway. These data indicate that uPA and macrophages are required for muscle hypertrophy following synergist ablation.  相似文献   

14.
Plasminogen activator inhibitor type-1 (PAI-1) is a major inhibitor of fibrinolysis by virtue of its capacity to inhibit urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). Systemic inflammation is invariably associated with elevated circulating levels of PAI-1, and during human sepsis plasma PAI-1 concentrations predict an unfavorable outcome. Knowledge about the functional role of PAI-1 in a systemic inflammatory response syndrome is highly limited. In this study, we determined the role of endogenous PAI-1 in cytokine release induced by administration of LPS or staphylococcal enterotoxin B (SEB). Both LPS and SEB elicited secretion of PAI-1 into the circulation of normal wild-type (Wt) mice. Relative to Wt mice, PAI-1 gene-deficient (PAI-1(-/-)) mice demonstrated strongly elevated plasma IFN-gamma concentrations after injection of either LPS or SEB. In addition, PAI-1(-/-) splenocytes released more IFN-gamma after incubation with LPS or SEB than Wt splenocytes. Both PAI-1(-/-) CD4+ and CD8+ T cells produced more IFN-gamma upon stimulation with SEB. LPS-induced IFN-gamma release in mice deficient for uPA, the uPA receptor, or tPA was not different from IFN-gamma release in LPS-treated Wt mice. These results identify a novel function of PAI-1 during systemic inflammation, where endogenous PAI-1 serves to inhibit IFN-gamma release by a mechanism that does not depend on its interaction with uPA/uPA receptor or tPA.  相似文献   

15.
Cultured keratinocytes resemble migrating keratinocytes under conditions of reepithelialization during wound healing. Such keratinocytes express urokinase-type plasminogen activator (uPA) and its specific receptor (uPA receptor). Receptor-bound uPA activates plasminogen, thus providing plasmin for pericellular proteolysis. uPA is regulated by the plasminogen activator inhibitors PAI-1 and PAI-2. As indicated by immunohistology, neither uPA nor uPA receptor is expressed in normal epidermis. Thus, the down-regulation of uPA and uPA-receptor expression in keratinocytes appears to be an important event in epidermal healing and restoration of a normal epidermal tissue architecture. We have addressed this matter by using a culture and differentiation system for keratinocytes in vitro. Keratinocytes were grown in organotypic cocultures for 4, 7, and 14 days. Frozen sections were analyzed with indirect immunofluorescence staining and overlay zymography, the latter detecting activity of plasminogen activators. While tPA and PAI-I stainings were consistently negative over the entire observation period, uPA and uPA receptor were expressed by basal keratinocytes at Days 4 and 7, but not at Day 14. Accordingly, overlay zymography revealed uPA activity at Days 4 and 7. PAI-2 was found throughout the entire observation period, but with varying distribution: at Days 4 and 7 all suprabasal keratinocytes stained positive for PAI-2. At Day 14, PAI-2-specific stainings were confined to the uppermost cells of the stratum spinosum. Our data demonstrate that uPA and uPA receptor, which are up-regulated in cultured keratinocytes, are down-regulated upon restoration of an epidermis-like structure. The distribution of PAI-2 varied over the observation period and at Day 14 resembled the distribution of PAI-2 in normal epidermis. Taken together, keratinocytes in organotypic coculture behave like keratinocytes in healing wounds in vivo with respect to the expression of the plasminogen activator system.  相似文献   

16.

Background

Systemic elevations in PAI-1 suppress the fibrinolytic pathway leading to poor collagen remodelling and delayed regeneration of tibialis anterior (TA) muscles in type-1 diabetic Akita mice. However, how impaired collagen remodelling was specifically attenuating regeneration in Akita mice remained unknown. Furthermore, given intrinsic differences between muscle groups, it was unclear if the reparative responses between muscle groups were different.

Principal Findings

Here we reveal that diabetic Akita muscles display differential regenerative responses with the TA and gastrocnemius muscles exhibiting reduced regenerating myofiber area compared to wild-type mice, while soleus muscles displayed no difference between animal groups following injury. Collagen levels in TA and gastrocnemius, but not soleus, were significantly increased post-injury versus controls. At 5 days post-injury, when degenerating/necrotic regions were present in both animal groups, Akita TA and gastrocnemius muscles displayed reduced macrophage and satellite cell infiltration and poor myofiber formation. By 10 days post-injury, necrotic regions were absent in wild-type TA but persisted in Akita TA. In contrast, Akita soleus exhibited no impairment in any of these measures compared to wild-type soleus. In an effort to define how impaired collagen turnover was attenuating regeneration in Akita TA, a PAI-1 inhibitor (PAI-039) was orally administered to Akita mice following cardiotoxin injury. PAI-039 administration promoted macrophage and satellite cell infiltration into necrotic areas of the TA and gastrocnemius. Importantly, soleus muscles exhibit the highest inducible expression of MMP-9 following injury, providing a mechanism for normative collagen degradation and injury recovery in this muscle despite systemically elevated PAI-1.

Conclusions

Our findings suggest the mechanism underlying how impaired collagen remodelling in type-1 diabetes results in delayed regeneration is an impairment in macrophage infiltration and satellite cell recruitment to degenerating areas; a phenomena that occurs differentially between muscle groups.  相似文献   

17.
Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13–800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.  相似文献   

18.
Loss of muscle mass occurs with disease, injury, aging, and inactivity. Restoration of normal muscle mass depends on myofiber growth, the regulation of which is incompletely understood. Cyclooxygenase (COX)-2 is one of two isoforms of COX that catalyzes the synthesis of prostaglandins, paracrine hormones that regulate diverse physiological and pathophysiological processes. Previously, we demonstrated that the COX-2 pathway regulates early stages of myofiber growth during muscle regeneration. However, whether the COX-2 pathway plays a common role in adult myofiber growth or functions specifically during muscle regeneration is unknown. Therefore, we examined the role of COX-2 during myofiber growth following atrophy in mice. Muscle atrophy was induced by hindlimb suspension (HS) for 2 wk, followed by a reloading period, during which mice were treated with either the COX-2-selective inhibitor SC-236 (6 mg·kg–1·day–1) or vehicle. COX-2 protein was expressed and SC-236 attenuated myofiber growth during reloading in both soleus and plantaris muscles. Attenuated myofiber growth in the soleus was associated with both decreased myonuclear addition and decreased inflammation, whereas neither of these processes mediated the effects of SC-236 on plantaris growth. In addition, COX-2–/– satellite cells exhibited impaired activation/proliferation in vitro, suggesting direct regulation of muscle cell activity by COX-2. Together, these data suggest that the COX-2 pathway plays a common regulatory role during various types of muscle growth via multiple mechanisms. cyclooxygenase-2; prostaglandins; myonuclear number; satellite cells; inflammation  相似文献   

19.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

20.
PAI-1 (plasminogen activator inhibitor-1) binds the urokinase-type plasminogen activator (uPA) and causes its degradation via its receptor uPAR and low-density lipoprotein receptor-related protein (LRP). While both uPA and PAI-1 are chemoattractants, we find that a preformed uPA-PAI-1 complex has no chemotactic activity and that PAI-1 inhibits uPA-induced chemotaxis. The inhibitory effect of PAI-1 on uPA-dependent chemotaxis is reversed when uPAR internalization is inhibited by the 39 kDa receptor-associated protein or by anti-LRP antibodies. Under the same conditions, the uPA-PAI-1 complex is turned into a chemoattractant causing cytoskeleton reorganization and extracellular-regulated kinase/mitogen-activated protein kinases activation. Thus, uPAR internalization by PAI-1 regulates cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号