首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary In European woodmice the amount and intensity of daily activity was compared to oxygen uptake and to the potential for oxidative metabolism of heart and skeletal muscle. One group of animals was inactivated by exposition to light during night time; another group of animals was trained by enforced running on a treadmill. The oxidative potential of the muscle tissue was assessed by morphometry of capillaries and mitochondria. A novel sampling technique was used which allowed us to obtain morphological data related to single muscles, to muscle groups, and finally to whole body muscle mass.Reducing the spontaneous activity by ten fold had no effect on oxygen uptake nor on capillaries or mitochondria in locomotory muscles. Mitochondrial volume was reduced, however, in heart and diaphragm. Enforced running increased the weight specific maximal oxygen uptake significantly. It also increased the mitochondrial volume in heart and diaphragm as well as in M. tibialis anterior. Capillary densities were neither affected by training nor by inactivation. A significant correlation was found between the capillary density and the volume density of mitochondria in all muscles analysed morphometrically. For the whole skeletal muscle mass of a European woodmouse the inner mitochondrial membranes were estimated to cover 30 m2. The oxygen consumption per unit time and per unit volume of muscle mitochondrion was found to be identical in all groups of animals (4.9 ml O2 min–1 cm–3).Symbols S v (im,m) surface area of inner mitochondrial membranes per unit mitochondrial volume - V v (mt, f) volume density of mitochondria (mitochondrial volume per fiber volume) - V (mt) total mitochondrial volume - V (f) muscle volume - N A (c, f) capillary density - (f) mean fiber cross-sectional area  相似文献   

2.
Summary Growing rats (4 weeks old) were kept for 3 weeks at 11° C and 24° C respectively. The cold-adapted animals showed a significantly higher oxygen consumption (64%). Volume density of subsarcolemmal and interfibrillar mitochondria as well as volume density of fat droplets were estimated in M. soleus and the diaphragm of both groups. In cold-adapted animals, the total volume of mitochondria was significantly increased by 24% in diaphragm and 37% in M. soleus. The volume of subsarcolemmal mitochondria was almost doubled in each muscle, but the volume of interfibrillar mitochondria did not change significantly. The surface of the inner mitochondrial membranes per unit volume of mitochondrion in M. soleus was significantly increased both in interfibrillar and subsarcolemmal mitochondria, whereas the surface of the outer mitochondrial membranes per unit volume of mitochondrion was increased only in the subsarcolemmal mitochondria. The volume of fat droplets in the diaphragm and M. soleus of cold adapted animals increased significantly by 62% and 150% respectively.  相似文献   

3.
We have investigated the presence of diazoxide- and nicorandil-activated K+ channels in rat skeletal muscle. Activation of potassium transport in the rat skeletal muscle myoblast cell line L6 caused a stimulation of cellular oxygen consumption, implying a mitochondrial effect. Working with isolated rat skeletal muscle mitochondria, both potassium channel openers (KCOs) stimulate respiration, depolarize the mitochondrial inner membrane and lead to oxidation of the mitochondrial NAD-system in a strict potassium-dependent manner. This is a strong indication for KCO-mediated stimulation of potassium transport at the mitochondrial inner membrane. Moreover, the potassium-specific effects of both diazoxide and nicorandil on oxidative phosphorylation in skeletal muscle mitochondria were completely abolished by the antidiabetic sulfonylurea derivative glibenclamide, a well-known inhibitor of ATP-regulated potassium channels (K(ATP) channels). Since both diazoxide and nicorandil facilitated swelling of de-energised mitochondria in KSCN buffer at the same concentrations, our results implicate the presence of a mitochondrial ATP-regulated potassium channel (mitoK(ATP) channel) in rat skeletal muscle which can modulate mitochondrial oxidative phosphorylation.  相似文献   

4.
Plant cells exhibit a high rate of mitochondrial DNA (mtDNA) recombination. This implies that before cytokinesis, the different mitochondrial compartments must fuse to allow for mtDNA intermixing. When and how the conditions for mtDNA intermixing are established are largely unknown. We have investigated the cell cycle-dependent changes in mitochondrial architecture in different Arabidopsis (Arabidopsis thaliana) cell types using confocal microscopy, conventional, and three-dimensional electron microscopy techniques. Whereas mitochondria of cells from most plant organs are always small and dispersed, shoot apical and leaf primordial meristematic cells contain small, discrete mitochondria in the cell periphery and one large, mitochondrial mass in the perinuclear region. Serial thin-section reconstructions of high-pressure-frozen shoot apical meristem cells demonstrate that during G1 through S phase, the large, central mitochondrion has a tentaculate morphology and wraps around one nuclear pole. In G2, both types of mitochondria double their volume, and the large mitochondrion extends around the nucleus to establish a second sheet-like domain at the opposite nuclear pole. During mitosis, approximately 60% of the smaller mitochondria fuse with the large mitochondrion, whose volume increases to 80% of the total mitochondrial volume, and reorganizes into a cage-like structure encompassing first the mitotic spindle and then the entire cytokinetic apparatus. During cytokinesis, the cage-like mitochondrion divides into two independent tentacular mitochondria from which new, small mitochondria arise by fission. These cell cycle-dependent changes in mitochondrial architecture explain how these meristematic cells can achieve a high rate of mtDNA recombination and ensure the even partitioning of mitochondria between daughter cells.  相似文献   

5.
A mathematical model is developed to analyze the influence of chemical reaction and diffusion processes on the intracellular organization of mitochondria in skeletal muscle cells. The mathematical modeling approach uses a reaction-diffusion analysis of oxygen, ATP, and ADP involved in energy metabolism and mitochondrial function as governed by oxygen supply, volume fraction of mitochondria, and rates of reaction. Superimposed upon and coupled to the continuum species material balances is a cellular automata (CA) approach governing mitochondrial life cycles in response to the metabolic state of the cell. The effectiveness factor (η), defined as the ratio of reaction rate in the system with finite rates of diffusion to those in the absence of any diffusion limitation is used to assess diffusional constraints in muscle cells. The model shows the dramatic effects that the governing parameters have on the mitochondrial cycle of life and death and how these effects lead to changes in the distribution patterns of mitochondria observed experimentally. The model results showed good agreement with experimental results on mitochondrial distributions in mammalian muscle fibers. The η increases as the mitochondrial population is redistributed toward the fiber periphery in response to a decreased availability of oxygen. Modification of the CA parameters so that the mitochondrial lifecycle is more sensitive to the oxygen concentration caused larger mitochondrial shifts to the edge of the cell with smaller changes in oxygen concentration, and thus also lead to increased values of η. The present study shows that variation in oxygen supply, muscle activity and mitochondrial ATP supply influence the η and are the important parameters that can cause diffusion limitations. In order to prevent diffusion constraints, the cell resorts to shifts in their mitochondrial population towards the cell periphery, thus increasing η.  相似文献   

6.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O2 consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

7.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O(2) consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

8.
Mitochondrial coupling in vivo in mouse skeletal muscle   总被引:3,自引:0,他引:3  
The coupling of mitochondrial ATP synthesis and oxygen consumption (ratio of ATP and oxygen fluxes, P/O) plays a central role in cellular bioenergetics. Reduced P/O values are associated with mitochondrial pathologies that can lead to reduced capacity for ATP synthesis and tissue degeneration. Previous work found a wide range of values for P/O in normal mitochondria. To measure mitochondrial coupling under physiological conditions, we have developed a procedure for determining the P/O of skeletal muscle in vivo. This technique measures ATPase and oxygen consumption rates during ischemia with 31P magnetic resonance and optical spectroscopy, respectively. This novel approach allows the independent quantitative measurement of ATPase and oxygen flux rates in intact tissue. The quantitative measurement of oxygen consumption is made possible by our ability to independently measure the saturations of hemoglobin (Hb) and myoglobin (Mb) from optical spectra. Our results indicate that the P/O in skeletal muscle of the mouse hindlimb measured in vivo is 2.16 ± 0.24. The theoretical P/O for resting muscle is 2.33. Systemic treatment with 2,4-dinitrophenol to partially uncouple mitochondria does not affect the ATPase rate in the mouse hindlimb but nearly doubles the rate of oxygen consumption, reducing in vivo P/O to 1.37 ± 0.22. These results indicate that only a small fraction of the oxygen consumption in resting mouse skeletal muscle is nonphosphorylating under physiological conditions, suggesting that mitochondria are more tightly coupled than previously thought. P/O; oxidative phosphorylation; proton leak; optical spectroscopy  相似文献   

9.
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K(m)) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle.  相似文献   

10.
Skeletal muscle mitochondrial dysfunction is hypothesized to contribute to the pathophysiology of insulin resistance and Type 2 diabetes. Whether thiazolidinedione therapy enhances skeletal muscle mitochondrial function as a component of its insulin-sensitizing effect is unknown. To test this, we evaluated skeletal muscle mitochondria and exercise capacity in Type 2 diabetic subjects with otherwise normal cardiopulmonary function in response to rosiglitazone therapy. Twenty-three subjects were treated for 12 wk and underwent pre- and posttherapy metabolic stress testing and skeletal muscle biopsies. Rosiglitazone significantly ameliorated fasting glucose, insulin, and free fatty acid levels but did not augment the subjects' maximal oxygen consumption (Vo(2max)) or their skeletal muscle mitochondrial copy number. The baseline Vo(2max) correlated strongly with muscle mitochondrial copy number (r = 0.56, P = 0.018, n = 17) and inversely with the duration of diabetes (r = -0.67, P = 0.004, n = 23). Despite the global lack of effect of rosiglitazone-mediated insulin sensitization on skeletal muscle mitochondria, subjects with the most preserved functional capacity demonstrated some plasticity in their mitochondria biology as evidenced by an upregulation of electron transfer chain proteins and in citrate synthase activity. This study demonstrates that the augmentation of skeletal muscle mitochondrial electron transfer chain content and/or bioenergetics is not a prerequisite for rosiglitazone-mediated improved insulin sensitivity. Moreover, in diabetic subjects, Vo(2max) reflects the duration of diabetes and skeletal muscle mitochondrial content. It remains to be determined whether longer-term insulin sensitization therapy with rosiglitazone will augment skeletal muscle mitochondrial bioenergetics in those diabetic subjects with relatively preserved basal aerobic capacity.  相似文献   

11.
目的:观察一次性力竭运动后大鼠脑、心、骨骼肌组织和线粒体中PHB1含量的变化及对大鼠线粒体功能的影响,探寻PHB1与线粒体功能和能量代谢的关系。方法:健康雄性SD大鼠40只,随机分为2组(n=20):对照组和一次性力竭运动组,大鼠进行一次性急性跑台运动建立力竭运动模型。收集各组大鼠的心、脑和骨骼肌组织样品并提取线粒体,检测其呼吸功能和ROS的变化。用Western blot方法检测组织和线粒体中PHB1蛋白表达水平;用分光光度计检测各器官中ATP含量以及线粒体中复合体V活性(ATP合酶活性)。结果:①一次性力竭运动后脑、心肌、骨骼肌中ATP含量显著性降低;②一次性力竭运动后脑、心肌、骨骼肌线粒体中复合体V活性、RCR、ROS显著性降低,ST4均显著性升高,ST3无显著性差异。③一次性力竭运动后心、脑、骨骼肌线粒体中PHB1的表达显著性减少。④通过相关性分析得出:一次性力竭运动后心、脑、骨骼肌中ATP含量与心、脑、骨骼肌中复合体V活性呈正相关;心、脑、骨骼肌中ATP含量和心、脑骨骼肌中PHB1的表达呈正相关。结论:一次性力竭运动后,降低线粒体氧化磷酸化功能,使大鼠脑、骨骼肌线粒体内ROS生成增加,PHB1的表达、ATP含量和复合体V活性均下降。一次性力竭运动使得大鼠线粒体内PHB1表达降低,线粒体功能减弱,机体能量代谢降低。  相似文献   

12.
Fang H  Chen M  Ding Y  Shang W  Xu J  Zhang X  Zhang W  Li K  Xiao Y  Gao F  Shang S  Li JC  Tian XL  Wang SQ  Zhou J  Weisleder N  Ma J  Ouyang K  Chen J  Wang X  Zheng M  Wang W  Zhang X  Cheng H 《Cell research》2011,21(9):1295-1304
The mitochondrion is essential for energy metabolism and production of reactive oxygen species (ROS). In intact cells, respiratory mitochondria exhibit spontaneous "superoxide flashes", the quantal ROS-producing events consequential to transient mitochondrial permeability transition (tMPT). Here we perform the first in vivo imaging of mitochondrial superoxide flashes and tMPT activity in living mice expressing the superoxide biosensor mt-cpYFP, and demonstrate their coupling to whole-body glucose metabolism. Robust tMPT/superoxide flash activity occurred in skeletal muscle and sciatic nerve of anesthetized transgenic mice. In skeletal muscle, imaging tMPT/superoxide flashes revealed labyrinthine three-dimensional networks of mitochondria that operate synchronously. The tMPT/superoxide flash activity surged in response to systemic glucose challenge or insulin stimulation, in an apparently frequency-modulated manner and involving also a shift in the gating mode of tMPT. Thus, in vivo imaging of tMPT-dependent mitochondrial ROS signals and the discovery of the metabolism-tMPT-superoxide flash coupling mark important technological and conceptual advances for the study of mitochondrial function and ROS signaling in health and disease.  相似文献   

13.
Skeletal muscle mitochondria play a specific role in many disease pathologies. As such, the measurement of oxygen consumption as an indicator of mitochondrial function in this tissue has become more prevalent. Although many technologies and assays exist that measure mitochondrial respiratory pathways in a variety of cells, tissue and species, there is currently a void in the literature in regards to the compilation of these assays using isolated mitochondria from mouse skeletal muscle for use in microplate based technologies. Importantly, the use of microplate based respirometric assays is growing among mitochondrial biologists as it allows for high throughput measurements using minimal quantities of isolated mitochondria. Therefore, a collection of microplate based respirometric assays were developed that are able to assess mechanistic changes/adaptations in oxygen consumption in a commonly used animal model. The methods presented herein provide step-by-step instructions to perform these assays with an optimal amount of mitochondrial protein and reagents, and high precision as evidenced by the minimal variance across the dynamic range of each assay.  相似文献   

14.
Previous studies have shown that muscle atrophy is associated with mitochondrial dysfunction and an increased rate of mitochondrial reactive oxygen species production. We recently demonstrated that fatty acid hydroperoxides (FA-OOHs) are significantly elevated in mitochondria isolated from atrophied muscles. The purpose of this study was to determine whether FA-OOHs can alter skeletal muscle mitochondrial function. We found that FA-OOHs (at low-micromolar concentrations) induce mitochondrial dysfunction assessed by a decrease in the rate of ATP production, oxygen consumption, and activity of respiratory chain complexes I and III. Using methods to distinguish superoxide release toward the matrix and toward the intermembrane space, we demonstrate that FA-OOHs significantly elevate oxidative stress in the mitochondrial matrix (and not the intermembrane space), with complex I as the major site of superoxide production (most probably from a site upstream of the ubiquinone binding site but downstream from the flavin binding site-the iron sulfur clusters). Our results are the first to indicate that FA-OOHs are important modulators of mitochondrial function and oxidative stress in skeletal muscle mitochondria and may play an important role in muscle atrophies that are associated with increased generation of FA-OOHs, e.g., denervation-induced muscle atrophy.  相似文献   

15.
Skeletal muscle mitochondrial dysfunction has been linked to several disease states as well as the process of aging. A possible factor involved is the peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α), a major player in the regulation of skeletal muscle mitochondrial metabolism. However, it is currently unknown whether PGC-1α, besides stimulating mitochondrial proliferation, also affects the functional capacity per mitochondrion. Therefore, we here tested whether PGC-1α overexpression, besides increasing mitochondrial content, also leads to intrinsic mitochondrial adaptations. Skeletal muscle mitochondria from 10 male, muscle-specific PGC-1α overexpressing mice (PGC-1αTg) and 8 wild-type (WT) mice were isolated. Equal mitochondrial quantities were then analyzed for their oxidative capacity by high-resolution respirometry, fuelled by a carbohydrate-derived (pyruvate) and a lipid (palmitoyl-CoA plus carnitine) substrate. Additionally, mitochondria were tested for reactive oxygen species (superoxide) production and fatty acid (FA)-induced uncoupling. PGC-1αTg mitochondria were characterized by an improved intrinsic mitochondrial fat oxidative capacity as evidenced by pronounced increase in ADP-stimulated respiration (P < 0.001) and maximal uncoupled respiration (P < 0.001) upon palmitoyl-CoA plus carnitine. Interestingly, intrinsic mitochondrial capacity on a carbohydrate-derived substrate tended to be reduced. Furthermore, the sensitivity to FA-induced uncoupling was diminished in PGC-1αTg mitochondria (P = 0.02) and this was accompanied by a blunted reduction in mitochondrial ROS production upon FAs in PGC-1αTg versus WT mitochondria (P = 0.04). Uncoupling protein 3 (UCP3) levels were markedly reduced in PGC-1αTg mitochondria (P < 0.001). Taken together, in addition to stimulating mitochondrial proliferation in skeletal muscle, we show here that overexpression of PGC-1α leads to intrinsic mitochondrial adaptations that seem restricted to fat metabolism.  相似文献   

16.
Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single- and double CK-knock-out mice strains (cytosolic (M-CK-/-), mitochondrial (Mi-CK-/-) and double knock-out (MiM-CK-/-), respectively). Maximal ADP-stimulated oxygen consumption flux (State3 Vmax; nmol O2 x mg mitochondrial protein(-1) x min(-1)) and ADP affinity (K50ADP; microM) were determined by respirometry. State 3 Vmax and of M-CK-/- and MiM-CK-/- gastrocnemius mitochondria were twofold higher than those of WT, but were unchanged for Mi-CK-/-. For mutant cardiac mitochondria, only the of mitochondria isolated from the MiM-CK-/- phenotype was different (i.e. twofold higher) than that of WT. The implications of these adaptations for striated muscle function were explored by constructing force-flow relations of skeletal muscle respiration. It was found that the identified shift in affinity towards higher ADP concentrations in MiM-CK-/- muscle genotypes may contribute to linear mitochondrial control of the reduced cytosolic ATP free energy potentials in these phenotypes.  相似文献   

17.
This paper reports a search for structural changes in skeletal muscle mitochondria of cold-acclimated rats. Histochemical studies (succinic dehydrogenase) show that there appears to be a higher proportion of red fibers in the semitendinosus muscle of the cold-acclimated rat and that the white region of this muscle contains fibers which resemble intermediate fibers. Electron micrographs show an apparently larger number of small mitochondria in both red and white fibers. Counts of mitochondria isolated from skeletal muscle show that there are more mitochondria per gram of both red and white muscle in the cold-acclimated rat than in the non-acclimated control rat. Each mitochondrion contains less protein and less cytochrome oxidase. Thus the mitochondrial mass per gram of red and white muscle is not altered, as indicated by the unchanged content of mitochondrial protein and of cytochrome oxidase per gram of muscle. Thus there appears to be a repackaging of mitochondrial material into smaller units in the skeletal muscle of the cold-acclimated rat. The alteration is shown to be associated with the adaptive state of the rat. No change occurs in muscle mitochondria of cold-acclimated rats in which the development of the enhanced metabolic response to noradrenaline, a measure of the extent of adaptation, is inhibited by treatment with oxytetracycline. The change in skeletal muscle mitochondria disappears when the enhanced metabolic response to noradrenaline in rats which are already cold-climated is reversed by treating the rats with oxytetracycline while they continue to live in the cold. The change in muscle mitochondria also disappears when the cold-acclimated rat undergoes deacclimation after return to room temperature. The alteration in muscle mitochondria is thus not associated either with shivering or with a high metabolic rate. Skeletal muscle of the cold-acclimated rat is known to be an important site of heat production in the course of nonshivering thermogenesis; that is, it can undergo a considerable increase in metabolic rate in the absence of shivering on exposure of the cold-acclimated rat to cold. The metabolic basis of nonshivering thermogenesis is in an enhanced capacity of the tissues of the cold-acclimated rat, principally skeletal muscle, to respond by an increase in metabolic rate to the large amounts of noradrenaline secreted by the nerve endings of the sympathetic nervous system as a consequence of cold-exposure. The mechanism by which the metabolic response to noradrenaline in the cold-acclimated rat can be enhanced is unknown. The structural alteration observed in the skeletal muscle mitochondria of the cold-acclimated rat may indicate a functional alteration responsible for the enhanced capacity of the muscle to respond to noradrenaline by an increase in metabolic rate.  相似文献   

18.
The number of studies on mitochondrial function is growing as a result of the recognition of the pivotal role of an intact mitochondrial function in numerous diseases. Measurements of oxygen consumption by the mitochondria in human skeletal muscle are used in many studies. There are several advantages of studying mitochondrial respiration in permeabilized fibers (Pfi), but the method requires a manual procedure of mechanical separation of the fiber bundles in the biopsy and chemical permeabilization of the cell membrane. This is time-consuming and subject to interpersonal variability. An alternative is to use a semiautomatic tool for preparation of a homogenate of the muscle biopsy. We investigated whether the PBI shredder is useful in preparing a muscle homogenate for measurements of mitochondrial respiratory capacity. The homogenate is compared with the Pfi preparation. Maximal respiratory capacity was significantly reduced in the homogenate compared with the Pfi from human skeletal muscle. A marked cytochrome c response was observed in the homogenate, which was not the case with the Pfi, indicating that the outer mitochondrial membrane was not intact. The mitochondria in the homogenate were more uncoupled compared with the Pfi. Manual permeabilization is an advantageous technique for preparing human skeletal muscle biopsies for respirometry.  相似文献   

19.
A significant proportion of standard metabolic rate is devoted to driving mitochondrial proton leak, and this futile cycle may be a site of metabolic control during hibernation. To determine if the proton leak pathway is decreased during metabolic depression related to hibernation, mitochondria were isolated from liver and skeletal muscle of nonhibernating (active) and hibernating arctic ground squirrels (Spermophilus parryii). At an assay temperature of 37 degrees C, state 3 and state 4 respiration rates and state 4 membrane potential were significantly depressed in liver mitochondria isolated from hibernators. In contrast, state 3 and state 4 respiration rates and membrane potentials were unchanged during hibernation in skeletal muscle mitochondria. The decrease in oxygen consumption of liver mitochondria was achieved by reduced activity of the set of reactions generating the proton gradient but not by a lowered proton permeability. These results suggest that mitochondrial proton conductance is unchanged during hibernation and that the reduced metabolism in hibernators is a partial consequence of tissue-specific depression of substrate oxidation.  相似文献   

20.
Inhomogeneous perfusion of capillary beds can result in large-scale diffusion of oxygen between distant portions of an organ. The conceptual model of a single capillary supplying oxygen to a surrounding concentric cylinder of tissue is not applicable to a consideration of such processes. An entirely different approach to the modeling of oxygen transport to tissue, with specific reference to the capillary beds of skeletal muscle, is presented here. This approach is intended to replace the theoretical Krogh cylinder model of capillary-tissue oxygen transport with a much more realistic model that takes into account inhomogeneities of capillary density, blood flow velocity, and oxygen concentration inherent in the micro-vasculature. The oxygen distribution in inhomogeneously perfused skeletal muscle is analyzed mathematically by defining an averaged concentration profile that neglects the fine-scale variation from capillary to capillary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号