首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of jump exercise on middle-aged osteopenic rats was investigated. Forty-two 9-mo-old female rats were either sham-operated (Sham) or ovariectomized (OVX). Three months after surgery, the rats were divided into the following groups: Sham sedentary, Sham exercised, OVX sedentary, and OVX exercised. Rats in the exercise groups jumped 10 times/day, 5 days/wk, for 8 wk, with a jumping height of 40 cm. Less than 1 min was required for the jump training. After the experiment, the right tibia and femur were dissected, and blood was obtained from each rat. OVX rats were observed to have increased body weights and decreased bone mass in their tibiae and femurs. Jump-exercised rats, on the other hand, had significantly increased tibial bone mass, strength, and cortical areas. The bone mass and strength of OVX exercised rats increased to approximately the same extent as Sham exercised rats, despite estrogen deficiency or osteopenia. Our data suggest that jump exercise has beneficial effects on lower limb bone mass, strength, bone mineral density, and morphometry in middle-aged osteopenic rats, as well as in Sham rats.  相似文献   

2.
Silicon is important for the proper growth and development of bone and connective tissues. This study was designed to investigate if water-soluble silicon could be used for the treatment of postmenopausal osteoporosis. Silicon (Si 20 mg/kg body weight/day) was administrated orally to 17-week-old ovariectomized (OVX) rats for 4 weeks. Silicon did not alter weight gain in OVX rats. Silicon supplementation significantly increased the bone mineral density of the femur (p < 0.05, vs. OVX control group) and tibia in OVX rats (p < 0.05, vs. OVX control group). Serum alkaline phosphatase and osteocalcin, two bone formation biomarkers tested, were not significantly altered, but urinary calcium and phosphorous excretion tended to decrease with silicon supplementation. OVX rats with silicon supplementation showed a relatively higher serum CTx compared to the nonsupplemented OVX group (p < 0.01, vs. OVX control group). According to these results, short-term soluble silicon supplementation improved bone mineral density in OVX-induced osteoporosis.  相似文献   

3.
Stroke-prone spontaneously hypertensive rats (SHRSP) induce spontaneous osteoporosis. To elucidate the specific characteristics of bone metabolism, the SHRSP was compared with age matched Wistar-Kyoto (WKY) rats. We investigated the effects of prolonged swimming exercise training on bone mineral density (BMD) and metabolism in the SHRSP. Seven-week-old male SHRSP and WKY were divided into three groups; the sedentary control WKY group (n = 6, WKY), the sedentary control SHRSP group (n = 6, SP) and the swimming exercise training SHRSP group (n = 6, SWIM) (in pool with 60 min./day, 5 days/week for 12 weeks). The femoral BMD, bone mineral content (BMC), strength, Ca and P contents (%) of SHRSP were approximately 17, 27, 25, 20 and 9%, respectively, lower than that of WKY (p < 0.001). Serum alkaline phosphatase (AlP) had not changed between both of SP and WKY, but tartrate-resistant acid phosphatase (TrAcP) of SP approximately 3-fold higher than that of WKY (p < 0.05). Both serum calcium (Ca) and intact parathyroid hormone (i-PTH) were similar between SP and WKY. However, serum phosphate (P) of SP was approximately 18% lower than that of WKY (N.S.). These results suggested that SHRSP induces osteopenia by the bone turnover of the promoted osteoclast activity with disturbed phosphate homeostasis. On the other hand, the femoral BMD and strength were approximately 7% and 20%, respectively, decreased in the SWIM (p < 0.001), and femoral bone Ca and P contents (%) were also approximately 11% and 14%, respectively, lower than that of SP (p < 0.001). There were no significant difference between SWIM and SP on serum Ca, but serum P of SWIM was significantly lower than that of SP (p < 0.05). These results suggested that the prolonged swimming exercise training in the SHRSP induces more cruelly hypophosphatemia, and leading to osteopenia eventually. We conclude that SHRSP induces osteopenia with disturbance of phosphate homeostasis, and the prolonged swimming exercise in the SHRSP might deteriorate hypophosphatemia and osteopenia.  相似文献   

4.
Objective:To describe the effects of strength exercise practice during pregnancy on the offspring’s development parameters: growth and motor performance, hippocampal neuroplasticity, and stress levels.Methods:Pregnant Wistar rats were divided into two groups: sedentary and exercised rats. Exercised pregnant rats were subjected to a strength training protocol (vertical ladder climbing) throughout the gestational period. Male offspring’s body weight, length, and head size were evaluated during the neonatal period (postnatal days [P]2–P21), as well as motor milestones during P0–P8. At P8, a set of male pups were subjected to global hippocampal DNA methylation, hippocampal cell proliferation, and plasma corticosterone concentration.Results:Offspring from trained mothers presented a transient change in body morphometric evaluations, no differences in milestone assessments, enhancement of cell proliferation in the dentate gyrus of the hippocampus, and decreased global hippocampal DNA methylation compared with the offspring from sedentary mothers. Furthermore, strength training during pregnancy did not change the corticosterone concentration of exercised mothers and their offspring.Conclusions:These data indicate that strength training can protect offspring’s development and could impact positively on parameters linked to cognitive function. This study provides a greater understanding of the effects of strength exercise practiced during pregnancy on the offspring’s health.  相似文献   

5.
This study had the following objectives: 1) to determine whether diabetic rats could increase muscle mass due to a physiological manipulation (chronic resistance exercise), 2) to determine whether exercise training status modifies the effect of the last bout of exercise on elevations in rates of protein synthesis, and 3) to determine whether chronic resistance exercise alters basal glycemia. Groups consisted of diabetic or nondiabetic rats that performed progressive resistance exercise for 8 wk, performed acute resistance exercise, or remained sedentary. Arterial plasma insulin in diabetic groups was reduced by about one-half (P < 0.05) compared with nondiabetic groups. Soleus and gastrocnemius-plantaris complex muscle wet weights were lower because of diabetes, but in response to chronic exercise these muscles hypertrophied in diabetic (0.028 +/- 0.003 vs. 0.032 +/- 0.0015 g/cm for sedentary vs. exercised soleus and 0.42 +/- 0.068 vs. 0.53 +/- 0.041 g/cm for sedentary vs. exercised gastrocnemius-plantaris, both P < 0.05) but not in nondiabetic (0.041 +/- 0.0026 vs. 0.042 +/- 0.003 g/cm for sedentary vs. exercised soleus and 0.72 +/- 0.015 vs. 0.69 +/- 0.013 g/cm for sedentary vs. exercised gastrocnemius-plantaris) rats when muscle weight was expressed relative to tibial length or body weight (data not shown). Another group of diabetic rats that lifted heavier weights showed muscle hypertrophy. Rates of protein synthesis were higher in red gastrocnemius in chronically exercised than in sedentary rats: 155 +/- 11 and 170 +/- 7 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in exercised diabetic and nondiabetic rats vs. 110 +/- 14 and 143 +/- 7 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in sedentary diabetic and nondiabetic rats. These elevations, however, were lower than in acutely exercised (but untrained) rats: 176 +/- 15 and 193 +/- 8 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in diabetic and nondiabetic rats. Finally, chronic exercise training in diabetic rats was associated with reductions in basal glycemia, and such reductions did not occur in sedentary diabetic groups. These data demonstrate that, despite lower circulating insulin concentrations, diabetic rats can increase muscle mass in response to a physiological stimulus.  相似文献   

6.
Effect of exercise on the development of osteoporosis in adult rats   总被引:1,自引:0,他引:1  
The role of moderate exercise in the prevention of high-turnover osteoporosis was investigated by the use of an animal model. The effect of chronic training on gravimetric, mineral, physical, and histological parameters of normal bone was also examined. Fifty-six adult female Long-Evans rats were divided into four groups: sedentary (C) and exercising controls (E) and sedentary (O) and exercising osteoporotics (EO). Exercising animals ran 4 h/wk for 1 yr. Two percent NH4Cl added to drinking water induced osteoporosis as shown by significantly lower femoral density and breaking strength and histomorphometrically quantified tibial trabecular bone volume but a normal mineral-to-matrix ratio in the O rats. The development of high-turnover osteoporosis in O rats was confirmed by significantly higher alkaline phosphatase activity (P less than 0.05), urinary hydroxyproline content (P less than 0.01), resorption surfaces (P less than 0.01), and histological parameters of bone formation (P less than 0.01). Exercise prevented all these biochemical, biophysical, and histological abnormalities in the EO group. Exercise had no influence on the density of normal femurs but tended to increase their breaking strength (by 11%) compared with femurs of C rats (P = 0.11).  相似文献   

7.
Obesity and exercise lead to structural changes in heart such as cardiac hypertrophy. The underlying signaling pathways vary according to the source of the overload, be it physiological (exercise) or pathologic (obesity). The physiological pathway relies more on PI3K-Akt signaling while the pathologic pathway involves calcineurin-Nuclear factor of activated T-cells activation and fibrosis accumulation. Independently, exercise and polyphenols have demonstrated to prevent pathologic cardiac hypertrophy. Therefore, we investigated the molecular adaptations of the combination of exercise training and grape polyphenols supplementation (EXOPP) in obese high-fat fed rats on heart adaptation in comparison to exercise (EXO), polyphenols supplementation (PP) and high-fat fed rats (HF), alone. Exercised and PP rats presented a higher heart weight/body weight ratio compared to HF rats. EXO and EXOPP depicted an increase in cell-surface area, P-Akt/Akt, P-AMPK/AMPK ratios with a decreased fibrosis and calcineurin expression, illustrating an activation of the physiological pathway, but no additional benefit of the combination. In contrast, neither cell-surface area nor Akt signaling increased in PP rats; but markedly decreased fibrosis, calcineurin expression, systolic blood pressure, higher SERCA and P-Phospholamdan/Phospholamdan levels were observed. These data suggest that PP rats have a shift from pathologic toward physiological hypertrophy. Our study demonstrates that polyphenols supplementation has physical-activity-status-specific effects; it appears to be more protective in sedentary obese insulin-resistant rats than in the exercised ones. Exercise training improved metabolic and cardiac alterations without a synergistic effect of polyphenols supplementation. These data highlight a greater effect of exercise than polyphenols supplementation for the treatment of cardiac alterations in obese insulin-resistant rats.  相似文献   

8.
Quercetin is a flavonoid which activates oxidative metabolism. Quercetin may reduce weight gain by decreasing feed efficiency. The present study aims to evaluate weight gain, caloric intake and feed efficiency in exercised and sedentary rats supplemented with quercetin. Wistar rats were divided into four groups: quercetin-exercise training (QT), quercetin-sedentary (QS), placebo-exercise training (PT) and placebo-sedentary (PS). Rats were exercised and/or orally supplemented with quercetin (25 mg · kg−1 on alternate days) during six weeks. Weight gain of the QT group decreased when compared with the PT and PS groups. Exercised groups increased cumulative caloric intake during the experimental period. The QT group rats also reduced their feed efficiency when compared with the QS and PS groups. These results suggest that quercetin is not able to decrease weight gain because no differences were found between placebo and quercetin condition either in the sedentary or in the training condition.  相似文献   

9.
Our goal was to examine whether exercise training alleviates impaired nitric oxide synthase (NOS)-dependent dilatation of the basilar artery in Type 1 diabetic rats. To test this hypothesis, we measured in vivo diameter of the basilar artery in sedentary and exercised nondiabetic and diabetic rats in response to NOS-dependent (acetylcholine) and -independent (nitroglycerin) agonists. To determine the potential role for nitric oxide in vasodilatation in sedentary and exercised nondiabetic and diabetic rats, we examined responses after NG-monomethyl-l-arginine (l-NMMA). We found that acetylcholine produced dilatation of the basilar artery that was similar in sedentary and exercised nondiabetic rats. Acetylcholine produced only minimal vasodilatation in sedentary diabetic rats. However, exercise alleviated impaired acetylcholine-induced vasodilatation in diabetic rats. Nitroglycerin produced dilatation of the basilar artery that was similar in sedentary and exercised nondiabetic and diabetic rats. l-NMMA produced similar inhibition of acetylcholine-induced dilatation of the basilar artery in sedentary and exercised nondiabetic and diabetic rats. Finally, we found that endothelial NOS (eNOS) protein in the basilar artery was higher in diabetic compared with nondiabetic rats and that exercise increased eNOS protein in the basilar artery of nondiabetic and diabetic rats. We conclude that 1) exercise can alleviate impaired NOS-dependent dilatation of the basilar artery during diabetes mellitus, 2) the synthesis and release of nitric oxide accounts for dilatation of the basilar artery to acetylcholine in sedentary and exercised nondiabetic and diabetic rats, and 3) exercise may exert its affect on cerebrovascular reactivity during diabetes by altering levels of eNOS protein in the basilar artery.  相似文献   

10.
Groups of lean or pre-obese LA/N-cp rats were subjected to a program of vigorous exercise (less than 4 hr/day) or remained sedentary from 6 weeks until 12 weeks of age. Sedentary pre-obese rats gained weight twice as rapidly as sedentary lean rats. Exercise treatment resulted in greater decrements in body wt in obese than in lean rats, but did not result in absolute weight loss in either group. At 12 weeks of age, fat pad weights in principle depots were 10-15 times greater in corpulent than in lean rats and were significantly smaller in the exercised groups of both phenotypes, and corresponded with lower relative adiposity compared to corresponding sedentary groups. Heart weights were greater in corpulent than lean, while gastrocnemius muscle weights were similar in both phenotypes. Exercise was without effect on the weight of either muscle tissue in either phenotype. Interscapular brown adipose tissue weights and the IBAT:BW ratio were greater in obese than in lean rats. IBAT weights were lower in exercised than sedentary rats of either phenotype, but the IBAT:BW ratio was lower only in the obese exercised rats. In sedentary rats, L-alpha-glycerophosphate dehydrogenase and malic enzyme activity were greater in obese than lean, and exercise treatment resulted in increased L-alpha-glycerophosphate dehydrogenase and malic enzyme only in lean rats. These results are consistent with a redistribution of energy expenditure from energy storing to energy dissipating pathways following vigorous exercise, resulting in slowed rates of weight gain and body fat accretion in both lean and obese animals, with the most significant decrements among pre-obese rats.  相似文献   

11.
大豆异黄酮对去卵巢大鼠骨密度及骨代谢影响的实验研究   总被引:16,自引:2,他引:14  
目的 探讨大豆异黄酮对去卵巢大鼠骨丢失的防治作用及其作用机理。方法 选用卵巢切除大鼠所诱发的骨质疏松模型,给与大豆异黄酮治疗。三个月后测定大鼠骨密度及骨代谢相关生化指标。结果 大豆异黄酮可提高卵巢切除大鼠的骨密度及血清雌激素水平,降低尿钙(Ca),尿磷(P)及尿羟脯氨酸(HOP)的排泄,同时降低血清总碱性磷酸酶(ALP),骨碱性磷酸酶(BALP),及抗酒石酸酸性磷酸酶(TRACP)的活性,还可使血清骨钙素(BGP)的浓度降低,促使卵巢切除大鼠子宫的相对重量增加,其作用与剂量相关。结论 小剂量大豆异黄酮有类似雌激素样作用,可有效防治卵巢切除大鼠的骨量丢失,其作用机制可能是通过降低骨转换率实现的。  相似文献   

12.
The combined and separate effects of exercise training and bisphosphonate (etidronate) therapy on bone mineral in postmenopausal women were compared. Forty-eight postmenopausal women were randomly assigned (double blind) to groups that took intermittent cyclical etidronate; performed strength training (3 d/week) and received matched placebo; combined strength training with etidronate; or took placebo and served as nonexercising controls. Bone mineral, lean tissue, and fat mass were assessed by dual-energy X-ray absorptiometry before and after 12 months of intervention. After removal of outlier results, changes in bone mineral density (BMD) of the lumbar spine and bone mineral content (BMC) of the whole body were greater in the subjects given etidronate (+2.5 and +1.4%, respectively) compared with placebo (-0.32 and 0%, respectively) (p < 0.05), while exercise had no effect. There was no effect of etidronate or exercise on the proximal femur and there was no interaction between exercise and etidronate at any bone site. Exercise training resulted in significantly greater increases in muscular strength and lean tissue mass and greater loss of fat mass compared with controls. We conclude that etidronate significantly increases lumbar spine BMD and whole-body BMC and that strength training has no additional effect. Strength training favourably affects body composition and muscular strength, which may be important for prevention of falls.  相似文献   

13.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

14.
The effect of exercise training on brown adipose tissue (BAT) thermogenesis was studied by measuring cytochrome oxidase activity, as a marker of mitochondrial abundance, mitochondrial guanosine-5'-diphosphate (GDP) binding, as an indicator of thermogenic activity and oxygen consumption in BAT in ovariectomized (OVX) obese rats and sham-operated rats. Six-week exercise training significantly suppressed body weight gain in OVX rats to the level of sedentary control rats, although food intake in exercise trained OVX rats increased more than in the sedentary OVX rats. Exercise training increased cytochrome oxidase activity, mitochondrial GDP binding and oxygen consumption in BAT in OVX rats, which were reduced in a sedentary condition, as well as in the control rats. These results suggest that exercise training potentiates BAT thermogenesis, which may contribute to the reduction of body weight in OVX obese rats.  相似文献   

15.
Cardiac contractile function is dependent on the integrity and function of the sarcolemmal membrane. Swimming exercise training is known to increase cardiac contractile performance. The purpose of the present study was to examine whether a swimming exercise program would alter sarcolemmal enzyme activity, ion flux, and composition in rat hearts. After approximately 11 wk of exercise training, cardiac myosin and actomyosin Ca2+-adenosinetriphosphatase (ATPase) activity was significantly higher in exercised rat hearts than in sedentary control rat hearts. Glycogen content was increased in plantaris and gastrocnemius muscles from exercised animals as was succinic dehydrogenase activity in gastrocnemius muscle of exercised rats in comparison to sedentary rat preparations. Sarcolemmal vesicles were isolated from hearts of exercise-trained and control rats. Sarcolemmal Na+-K+-ATPase and K+-p-nitrophenylphosphatase activities, Na+-Ca2+ exchange, and passive Ca2+ binding did not differ between the two groups. ATP-dependent Ca2+ uptake and 5'-nucleotidase activity were elevated in the cardiac sarcolemmal vesicles isolated from exercised animals compared with sedentary control rats. Sarcolemmal phospholipid composition was not altered by the exercise training. Our results demonstrate that swimming training in rats does not affect most parameters of cardiac sarcolemmal function or composition. However, the elevated sarcolemmal Ca2+ pump activity in exercised rats may help to reduce intracellular Ca2+ and augment cardiac relaxation rates. The enhanced 5'-nucleotidase activity may stimulate adenosine production, which could affect myocardial blood flow. The present results further our knowledge on the subcellular response of the heart to swimming training in the rat.  相似文献   

16.
The physiological role of 11beta hydroxy-androstenedione (11betaOHA), a primary adrenal steroid, remains unknown. In the present study, we investigated the effect of 11betaOHA on bone metabolism in vitro and in vivo. Administration of 11betaOHA enhanced the clonal growth of marrow osteoprogenitor cells cultured from normal rats. In ovariectomized rats, 11betaOHA restored osteogenesis and increased the bone mineral density at both the metaphyseal and diaphyseal regions of the femur. Bone histomorphometric study of ovariectomized rats demonstrated that the mineral apposition rate of both cortical bone and trabecular bone was increased by treatment with 11betaOHA. In addition, 11betaOHA increased alkaline phosphatase activity in cultured osteoblastic cells (MC3T3-E1 and SaOS-2). The androgenic and anabolic effects of 11betaOHA were respectively estimated to be less than 1/100th and 1/10th-1/100th of those of testosterone, while the estrogenic action of 11betaOHA was also very weak. These findings suggest an influence of 11betaOHA on physiological bone metabolism and indicate that this steroid may be useful for stimulating of bone formation in the treatment of osteoporosis.  相似文献   

17.
Rates of protein synthesis are reduced in severely diabetic rats. A potential mechanism through which insulin can stimulate protein synthesis is modulation of the activity of eukaryotic initiation factor 2B (eIF2B). The activity of this factor is elevated after exercise in nondiabetic rats but is markedly lower in skeletal muscle from nonexercised severely diabetic rats. We tested the hypothesis that a failure to increase eIF2B activity after exercise is one potential reason for a failure of severely diabetic rats to increase rates of protein synthesis after resistance exercise. Diabetic (partial pancreatectomy, plasma glucose >475 mg/dl) and nondiabetic male Sprague-Dawley rats (approximately 300 g) performed acute moderate-intensity resistance exercise or remained sedentary. Rates of protein synthesis were higher in nondiabetic rats and increased significantly with exercise, while no elevation was found in severely diabetic rats. The activity of eIF2B was higher (P < 0.05) in exercised nondiabetic than in sedentary nondiabetic rats (0.096 +/- 0.016 and 0.064 +/- 0.02 pmol GDP exchanged/min, respectively), but no difference was observed between sedentary and exercised diabetic rats (0.037 +/- 0.001 and 0.044 +/- 0.008 pmol GDP exchanged/min, respectively), and these activities were lower (P < 0.05) than in nondiabetic animals. These data suggest that severe hypoinsulinemia is associated with an inability to increase eIF2B activity in response to exercise.  相似文献   

18.
Exercise-induced bone gains are lost if exercise ceases. Therefore, continued exercise at a reduced frequency or intensity may be required to maintain these benefits. In this study, we evaluated whether 4 wk of reduced exercise after 4 wk of running exercise in growing male mice results in the maintenance of high bone mass. Five-week-old mice were divided into the following groups: 1) baseline control; 2) 4-wk control; 3) 4-wk exercise; 4) 8-wk control; 5) 4-wk exercise followed by 4-wk cessation of training; and 6) 4-wk exercise followed by reduced exercise at half the frequency. The regimen consisted of exercise 6 days/wk, and the reduced exercise regimen consisted of running 3 days/wk on a treadmill for 30 min/day, at 12 m/min on a 10 degrees uphill slope. Running exercise significantly increased bone mineral density of the femur, periosteal mineral apposition rate, bone formation rate, percent labeled perimeter at the midfemur, and osteogenic activity of bone marrow cells. However, these parameters declined to the age-matched sedentary control after cessation of training. In contrast, the reduced exercise group had significantly higher mineral apposition rate compared with those of the sedentary control and cessation of training groups. Furthermore, bone mineral density for the reduced exercise group was significantly higher than those for the other groups. These results suggest that the high bone formation gained through exercise can be maintained, and bone mass was further increased by subsequent exercise even if the exercise frequency is reduced.  相似文献   

19.
The objective of this study was to investigate the effects of ultrasound treatment and physical exercise on the velocity of bone consolidation and resistance to deformation. We performed osteotomy in the upper third of the right tibia of rats. Physical training consisted of swimming 1 h per day with a load of 5% b.w. for 30 days. Therapy with medium-intensity ultrasound was applied daily on the damaged area. Wistar rats were divided into the following groups: osteotomized sedentary animals with no ultrasound treatment (1.OSnUS), osteotomized trained animals with no ultrasound treatment (2.OTnUS), osteotomized sedentary animals with ultrasound treatment (3.OSwUS), and osteotomized trained animals with ultrasound treatment (4.OTwUS). The animals were sacrificed for the following analyses: muscle glycogen, serum alkaline phosphatase at the 5th, 10th, 20th, and 30th days, test of maximum resistance to flexion, rupture flexion and mean tibial rigidity at the 30th day. Muscle glycogen was increased at the 20th day; alkaline phosphatase was elevated at the 5th and 20th days in groups 3.OSwUS and 4.OTwUS, and decreased at the 10th day. Groups 1.OSnUS and 2.OTnUS did not show significant variations. In the mechanical resistance tests, we noted that ultrasound therapy and the association of physical activity used in the present study showed significant differences in bone resistance and bone rigidity after 30 days of treatment. These facts suggest that ultrasound or physical activity, or their combination may accelerate the process of bone tissue repair.  相似文献   

20.
Currently, it is unclear which index of haematological parameters could be used to most easily monitor iron deficiency during endurance training. To address this question, 16 male Wistar rats were randomly assigned to two groups: a sedentary group (n = 8) and an exercised group (n = 8). Initially, animals in the exercise group started running on a treadmill at a rate of 30 m/min, on a 0% grade, for 1 min/session. Running time was gradually increased by 2 min/day. The training plan was one session per day during the initial 2 weeks and two sessions per day during the third to ninth week. At the end of the 9-week experiment, we analysed the blood of the experimental animals for haemoglobin levels, erythrocyte numbers, haematocrit, serum iron levels, total iron binding capacity, transferrin saturation, serum ferritin levels and soluble transferrin receptor (sTfR) levels, and we calculated the ratio of sTfR/ferritin. Erythrocyte numbers, haemoglobin levels and haematocrit values were decreased after 9 weeks of exercise, but sTfR and sTfR/ferritin values were increased (P < 0.01 or P < 0.05). The training regime significantly increased TfR mRNA levels in the bone marrow cells of the exercised rats compared with the sedentary group (1.8 ± 0.5 vs. 1.1 ± 0.2, P < 0.01). These results revealed a significant correlation between TfR levels in the bone marrow cells and the ratio of sTfR/ferritin (r = 0.517; P < 0.01) and sTfR levels (r = 0.206; P < 0.05) in sedentary and exercised rats. In conclusion, we show that sTfR indices and the ratio of sTfR/ferritin could be useful indicators for monitoring iron deficiency during endurance training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号