首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The best method of assessing muscular force qualities during isoinertial stretch shorten cycle lower body movements remains a subject of much debate. This study had 2 purposes: Firstly, to calculate the interday reliability of peak force (PF) measurement and a variety of force-time measures, and, secondly, to compare the reliability of the 2 most common technologies for measuring force during loaded jump squats, the linear position transducer (PT), and the force plate (FP). Twenty-five male elite level rugby union players performed 3 rebound jump squats with a 40-kg external load on 2 occasions 1 week apart. Vertical ground reaction forces (GRFs) were directly measured via an FP, and force was differentiated from position data collected using a PT. From these data, a number of force-time variables were calculated for both the FP and PT. Intraclass correlation coefficient (ICC), coefficient of variation (CV), and percent change in the mean were used as measures of between-session reliability. Additionally, Pearson's product moment correlation coefficients were used to investigate intercorrelations between variables and technologies. Both FP and PT were found to be a reliable means of measuring PF (ICC = 0.88-0.96, CV = 2.3-4.8%), and the relationship between the 2 technologies was very high and high for days 1 and 2, respectively (r = 0.67-0.88). Force-time variables calculated from FP data tended to have greater relative and absolute consistency (ICC = 0.70-0.96, CV = 5.1-51.8%) than those calculated from differentiated PT data (ICC = 0.18-0.95, CV = 7.7-93.6%). Intercorrelations between variables ranged from trivial to practically perfect (r = 0.00-1.00). It was concluded that PF can be measured reliably with both FP and PT technologies, and these measurements are related. A number of force-time values can also be reliably calculated via the use of GRF data. Although some of these force-time variables can be reliably calculated using position data, variation of measurement is generally greater when using position data to calculate force.  相似文献   

2.
The purpose of this study was to determine the reliability and validity of a portable force plate when analyzing jumping and landing tasks. Subjects performed 3 drop vertical jumps and 3 drop landings on both a standard strain gauge laboratory force plate and a portable force plate. In contrast to typical laboratory installed force plates, the portable 6-component force plate can be easily transported and used onsite at various training or data collection sites and incorporates Hall effect technology. The measured parameters included maximum force and time to maximum force for initial stance of the both tests, maximum takeoff force, and time to maximum takeoff force for the drop vertical jump. The Pearson correlation coefficients for the drop landing and the drop vertical jump for maximum force (r = 0.942, r = 0.940), time to maximum force (r = 0.891, r = 0.920) and for drop jump maximum jumping force (r = 0.971), and time to maximum takeoff force (r = 0.917) were all high and indicate that the force data collected by a resistor-type portable force plate provide similar measures to a standard strain-gauge laboratory force plate. Additionally, the within session reliability of the drop landing and the drop vertical jump measured by the portable force plate showed high interclass correlation coefficients for examined variables of 0.979 and 9.67 for maximum landing force and 0.917 and 0.920 for time to maximum landing force, respectively. The interclass correlation coefficients for the maximum takeoff force and time to maximum takeoff force during the drop vertical jump were 0.991 and 0.86. The results indicate the force and timing measurements from the portable force plate were both valid and reliable. Use of the portable force plate may facilitate methods of force measurement that can be applied out into the field and therefore a valuable tool for on site landing and jump force measurements in a variety of settings for large numbers of subjects.  相似文献   

3.
The purpose of this study was to determine the number of familiarization sessions required to obtain an accurate measure of reliability associated with force variables recorded during unloaded and loaded (30 and 60% of 1 repetition maximum squat [1RM]) static vertical jumps (SJ). Nine physically active men attended 4 separate testing sessions over a 2-week period. Force platform recordings of peak force, peak rate of force development (pRFD), average rate of force development, takeoff velocity, average power, and peak power were obtained for each jump. During each of the 4 testing sessions, 3 jumps were performed under each of the load conditions. The average of the force variables were used in the analysis. Familiarization was assessed using the scores obtained during the 4 separate testing sessions. Reliability was assessed by calculating intraclass correlation coefficients (ICCs) and coefficient of variation (CV) associated with the force variables. No significant differences (p > 0.05) were obtained between the testing sessions for any of the force variables. With the exception of pRFD, the force variables showed reasonably good levels of test-retest reliability (ICC range: 0.75-0.99; CV range: 1.2-7.6%). High levels of reliability can be achieved in a variety of force variables without the need for familiarization sessions when performing SJ under unloaded conditions and with loads of 30 and 60% of 1RM squat with physically active men.  相似文献   

4.
The purpose of this investigation was to determine the concurrent validity of a commonly used electronic switch mat (ESM), or jump mat, compared with force plate (FP) data. The efficiency of collection and accuracy of data are paramount to athlete and player field testing for the strength and conditioning coach who often has access only to a jump mat. Ten subjects from 5 different sporting backgrounds completed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 drop jumps (DJs). The jumps were performed on an AMTI FP operating at 1,000 Hz with an ESM positioned on top of the platform. All the subjects were experienced with the protocols involved with jump testing. The resulting absolute errors between FP and ESM data were 0.01, 0.02, and 0.01 m for CMJ, SJ, and DJ heights, respectively. However, the coefficient of variation for the DJ contact time (CT) was 57.25%, CMJ (r = 0.996), and SJ (r = 0.958) heights correlated very strongly with force platform data, and DJ data were not as strong (r = 0.683). Confidence interval tests revealed bias toward CMJ and SJ (p < 0.05). The jump mat can accurately calculate the CMJ height, SJ height, and reactive strength index for all the 3 jump protocols. However, the faster CTs and rapid movements involved in a DJ may limit its reliability when giving measures of CT, flight time, and height jumped for DJs. Strength and conditioning coaches can use such a jump mat device with the confidence that it is accurately producing valid measurements of their athlete's performance for CMJ and SJ slow SSC protocols.  相似文献   

5.
The purpose of this study was to determine the reliability of eccentric (ECC) and concentric (CON) kinematic and kinetic variables thought to be critical to jump performance during bilateral vertical countermovement jump (VCMJ) and horizontal countermovement jump (HCMJ) across children of different maturity status. Forty-two athletic male and female participants between 9 and 16 years of age were divided into 3 maturity groups according to peak height velocity (PHV) offset (Post-PHV, At-PHV, and Pre-PHV) and percent of predicted adult stature. All the participants performed 3 VCMJ and HCMJ trials and the kinematics, and kinetics of these jumps were measured via a force plate over 3 testing sessions. In both jumps, vertical CON mean and peak power and jump height or distance were the most reliable measures across all groups (change in the mean [CM] = -5.4 to 6.2%; coefficient of variation [CV] = 2.1-9.4%; Intraclass correlation coefficient [ICC] = 0.82-0.98), whereas vertical ECC mean power was the only ECC variable with acceptable reliability for both jumps (CM = -0.7 to 10.1%; CV = 5.2-15.6%; ICC = 0.74-0.97). A less mature state was "likely" to "very likely" to reduce the reliability of the HCMJ ECC kinetics and kinematics. These findings suggested that movement variability is associated with the ECC phase of CMJs, especially in Pre-PHV during the HCMJ. Vertical CON mean and peak power and ECC mean power were deemed reliable and appropriate to be used in children as indicators of jump and stretch-shortening cycle performance.  相似文献   

6.
The purpose of this study was to verify the concurrent validity of a bar-mounted Myotest? instrument in measuring the force and power production in the squat and bench press exercises when compared to the gold standard of a computerized linear transducer and force platform system. Fifty-four men (bench press: 39-171 kg; squat: 75-221 kg) and 43 women (bench press: 18-80 kg; squat: 30-115 kg) (age range 18-30 years) performed a 1 repetition maximum (1RM) strength test in bench press and squat exercises. Power testing consisted of the jump squat and the bench throw at 30% of each subject's 1RM. During each measurement, both the Myotest? instrument and the Celesco linear transducer of the directly interfaced BMS system (Ballistic Measurement System [BMS] Innervations Inc, Fitness Technology force plate, Skye, South Australia, Australia) were mounted to the weight bar. A strong, positive correlation (r) between the Myotest and BMS systems and a high correlation of determination (R2) was demonstrated for bench throw force (r = 0.95, p < 0.05) (R2 = 0.92); bench throw power (r = 0.96, p < 0.05) (R2 = 0.93); squat jump force (r = 0.98, p < 0.05) (R2 = 0.97); and squat jump power (r = 0.91, p < 0.05) (R2 = 0.82). In conclusion, when fixed on the bar in the vertical axis, the Myotest is a valid field instrument for measuring force and power in commonly used exercise movements.  相似文献   

7.
The primary aim of this study was to determine reliability and factorial validity of squat (SJ) and countermovement jump (CMJ) tests. The secondary aim was to compare 3 popular methods for the estimation of vertical jumping height. Physical education students (n = 93) performed 7 explosive power tests: 5 different vertical jumps (Sargent jump, Abalakow's jump with arm swing and without arm swing, SJ, and CMJ) and 2 horizontal jumps (standing long jump and standing triple jump). The greatest reliability among all jumping tests (Cronbach's alpha = 0.97 and 0.98) had SJ and CMJ. The reliability alpha coefficients for other jumps were also high and varied between 0.93 and 0.96. Within-subject variation (CV) in jumping tests ranged between 2.4 and 4.6%, the values being lowest in both horizontal jumps and CMJ. Factor analysis resulted in the extraction of only 1 significant principal component, which explained 66.43% of the variance of all 7 jumping tests. Since all jumping tests had high correlation coefficients with the principal component (r = 0.76-0.87), it was interpreted as the explosive power factor. The CMJ test showed the highest relationship with the explosive power factor (r = 0.87), that is, the greatest factorial validity. Other jumping tests had lower but relatively homogeneous correlation with the explosive power factor extracted. Based on the results of this study, it can be concluded that CMJ and SJ, measured by means of contact mat and digital timer, are the most reliable and valid field tests for the estimation of explosive power of the lower limbs in physically active men.  相似文献   

8.
The aim of this study was to evaluate the reliability and validity of a repeated modified agility test (RMAT) to assess anaerobic power and explosiveness. Twenty-seven subjects (age: 20.2 ± 0.9 years, body mass: 66.1 ± 6.0 kg, height: 176 ± 6 cm, and body fat: 11.4 ± 2.6%) participated in this study. After familiarization, subjects completed the RMAT consisting of 10 × 20-m maximal running performances (moving in forward, lateral, and backward) with ~25-second recovery between each run. Ten subjects performed the RMAT twice separated by at least 48 hours to evaluate relative and absolute reliability and usefulness of the test. The criterion validity of the RMAT was determined by examining the relationship between RMAT indices and the Wingate anaerobic test (WAT) performances and both vertical and horizontal jumps. Reliability of the total time (TT) and peak time (PT) of the RMAT was very good, with intraclass correlation coefficient > 0.90 and SEM < 5% and low bias. The usefulness of TT and PT of the RMAT was rated as "good" and "OK," respectively. The TT of the RMAT had significant correlations with the WAT (peak power: r = -0.44; mean power: r = -0.72), vertical jumps (squat jump: r = -0.50; countermovement jump: r = -0.61; drop jump (DJ): r = -0.55; DJ with dominant leg: r = -0.72; DJ with nondominant leg: r = -0.53) and 5 jump test (r = -0.56). These findings suggest that the RMAT is a reliable and valid test for assessing anaerobic power and explosiveness in multisprint sport athletes. Consequently, the RMAT is an easily applied, inexpensive field test and can provide coaches and strength and conditioning professionals with relevant information concerning the choice and the efficacy of training programs.  相似文献   

9.
This study assessed the mechanical reliability and validity of the INRTEK iSAM 9000 isokinetic dynamometer, and compared the obtained torque values of the prototype device with those from a traditional device. Sixty volunteers (40 men and 20 women) were tested at 60 degrees per second for shoulder, knee, and trunk flexion, and extension on both the Cybex 6000 and a new isokinetic dynamometer (iSAM 9000). Intraclass correlation coefficients (ICC) and standard errors of measurement (SEM) revealed a high level of reproducibility and precision in the device's torque measurements (ICC range = 0.94-0.98; SEM range = 5.2-29.7). Pearson r values revealed very high relationships between the two instruments (set 1: r = 0.84-0.93; set 2: r = 0.87-0.93; P < 0.05). Significantly higher peak torque for both sets of left and right knee flexion and extension, right shoulder extension and trunk extension was found for the iSAM 9000 compared to the Cybex 6000 (P < 0.05). The strong ICCs and small SEMs support the device's mechanical reliability and validity. The high correlation coefficients between the prototype dynamometer and the Cybex 6000 support the new device's validity in the measurement of isokinetic torque. The findings of this study will be used to refine the next generation of the INRTEK isokinetic device with respect to test protocols and the reliability of measuring human muscle performance.  相似文献   

10.
Our aim was to clarify the relationship between power output and the different mechanical parameters influencing it during squat jumps, and to further use this relationship in a new computation method to evaluate power output in field conditions. Based on fundamental laws of mechanics, computations were developed to express force, velocity and power generated during one squat jump. This computation method was validated on eleven physically active men performing two maximal squat jumps. During each trial, mean force, velocity and power were calculated during push-off from both force plate measurements and the proposed computations. Differences between the two methods were not significant and lower than 3% for force, velocity and power. The validity of the computation method was also highlighted by Bland and Altman analyses and linear regressions close to the identity line (P<0.001). The low coefficients of variation between two trials demonstrated the acceptable reliability of the proposed method. The proposed computations confirmed, from a biomechanical analysis, the positive relationship between power output, body mass and jump height, hitherto only shown by means of regression-based equations. Further, these computations pointed out that power also depends on push-off vertical distance. The accuracy and reliability of the proposed theoretical computations were in line with those observed when using laboratory ergometers such as force plates. Consequently, the proposed method, solely based on three simple parameters (body mass, jump height and push-off distance), allows to accurately evaluate force, velocity and power developed by lower limbs extensor muscles during squat jumps in field conditions.  相似文献   

11.
The maximum velocity (Vmax) reached during countermovement jumps (CMJ) has been considered a performance indicator to evaluate vertical jump ability. The aim of this study was to compare Vmax during loaded CMJ (CMJloaded) using three different technologies to show a criterion for selecting the more appropriate depending on its use. Nine recreationally active men performed a CMJloaded test. Five jumps were made in each of 6 series with a 20- kg barbell + 0, + 5, + 10, + 15, + 20 and + 25 kg, with 2 seconds rest between the jumps and 5 minutes rest between the series to explore a wide range of speeds. Vmax was obtained from force platform, inertial device and linear encoder technologies. Bland-Altman plots and mean differences were used to compare devices. Reproducibility was tested using the intraclass correlation coefficient (ICC) for single measures and typical error (TE). All technologies showed high levels of reproducibility, ICC higher than 0.75 and TE lower than 10 %. There were non-significant differences in Vmax between each pair of technologies (linear encoder 2.11 ± 0.24 m·s-1, accelerometer 2.11 ± 0.26 m·s-1, force platform 2.12 ± 0.24 m·s-1) reporting a very low bias. However the limits of agreement between the different technologies evaluated were high (± 0.33 m·s-1). In conclusion, the accelerometer, linear encoder and force platform were suitably reliable to be used to measure Vmax during loaded vertical jumps but their values were not interchangeable.  相似文献   

12.
Theoretical justification for the preferential use of casing (circumference) measurements for estimating total body volume (TBV) and body density (Db) was studied in 24 female subjects (mean age 20 yr, mean wt 58 kg). Multiple linear regression equations resulted in R = On-0.99 with a standard error no larger than 1.69 liters for predicting TBV and R = Oa-Oh with a standard error no larger than 0.0084 g/ml for predicting Db. Validations of these regression equations using two additional samples of subjects resulted in validity coefficients of r = 0 -0.99. All the correlation coefficients were statistically significant (P less than 0.01).  相似文献   

13.
The purpose of this study was to investigate the validity of power measurement techniques during the jump squat (JS) utilizing various combinations of a force plate and linear position transducer (LPT) devices. Nine men with at least 6 months of prior resistance training experience participated in this acute investigation. One repetition maximums (1RM) in the squat were determined, followed by JS testing under 2 loading conditions (30% of 1RM [JS30] and 90% of 1RM [JS90]). Three different techniques were used simultaneously in data collection: (a) 1 linear position transducer (1-LPT); (b) 1 linear position transducer and a force plate (1-LPT + FP); and (c) 2 linear position transducers and a force place (2-LPT + FP). Vertical velocity-, force-, and power-time curves were calculated for each lift using these methodologies and were compared. Peak force and peak power were overestimated by 1-LPT in both JS30 and JS90 compared with 2-LPT + FP and 1-LPT + FP (p 相似文献   

14.
The purposes of this investigation were to evaluate the occurrence of a small amplitude counter-movement (SACM) in SJ (squat jump) trials of elite athletes to determine the efficacy of gross observation and the use of a portable position transducer to determine whether or not a SACM occurred. The subjects (N = 30, 20.1 +/- 3.0 years, 199.0 +/- 8.4 cm, and 87.2 +/- 9.5 kg) were a combination of high-performance (National Team) and elite athletes (Olympian) from the sports of athletics, swimming, and volleyball. All subjects performed SJ trials on a force platform, with a linear position transducer attached to a bar placed across the shoulders. Subjects performed the SJ from a depth that allowed for a 90 degrees knee angle, with the subject's instructed to maintain a 3-second isometric hold preceding the concentric action of the jump. One hundred twenty-five SJ trials were observed for a SACM and analyzed (using the force plate data and position transducer data) for a SACM. Of the 125 SJ trials, 69 trials (55.2%) were observed to have a SACM by the researchers. In the remaining 56 trials, 43 of these trials contained a force unload (>/=10% body mass) before initiation of the concentric action, indicating a SACM. Of the 119 SJ trials where a force unload was observed and detected by the force-time graph, 118 (99.2%) of these trials also showed a change in displacement using the displacement-time graph from the linear position transducer. The results of this study indicate that achieving compliance to protocol in the SJ is difficult, and that gross observation is inadequate in detecting a SACM in the SJ. From a practical perspective, these results suggest that using a force plate or a linear position transducer would allow the strength and conditioning coach to ensure compliance to instructions in the SJ.  相似文献   

15.
Practitioners training the older adult may benefit from a low-cost, easy-to-administer field test of upper body power. This study evaluated validity and reliability of the seated medicine ball throw (SMBT) in older adults. Subjects (n = 33; age 72.4 ± 5.2 years) completed 6 trials of an SMBT in each of 2 testing days and 2 ball masses (1.5 and 3.0 kg). Subjects also completed 6 trials of an explosive push-up (EPU) on a force plate over 2 testing days. Validity was assessed via a Pearson Product-Moment correlation (PPM) between SMBT and EPU maximal vertical force. Reliability of the SMBT was determined using PPMs (r), Intraclass correlation (ICC, R) and Bland-Altman plots (BAPs). For validity, the association between the SMBT and the EPU revealed a PPM of r = 0.641 and r = 0.614 for the 1.5- and 3.0-kg medicine balls, respectively. Test-retest reliability of the 1.5- and 3.0-kg SMBT was r = 0.967 and r = 0.958, respectively. The ICC values of the 1.5- and 3.0-kg SMBT were R = 0.994 and 0.989, respectively. The BAPs revealed 94% of the differences between day 1 and 2 scores were within the 95% confidence interval of the mean difference. Test-retest reliability for the EPU was r = 0.944, R = 0.969. The BAPs showed 94% of the differences between day 1 and 2 scores were within the 95% confidence interval of the mean difference, for both medicine ball throws. In conclusion, for the older adult, the SMBT appears to be highly reliable test of upper body power. Its validity relative to the maximal force exerted during the EPU is modest. The SMBT is an inexpensive, safe, and repeatable measure of upper body power for the older adult.  相似文献   

16.
Manufacturers recommend that linear position transducers (LPTs) should be placed on the side of a barbell (or wooden dowel) to measure countermovement jump (CMJ) height, but the validity and reliability of this placement have not been compared to other attachment sites. Since this recommended attachment site is far from the centre of mass, a belt attachment where the LPT is placed between the feet may increase the validity and reliability of CMJ data. Thirty-six physical education students participated in the study (24.6 ± 4.3 years; 177.0 ± 7.7 cm; 77.2 ± 9.0 kg). Parameters from the two LPT attachments (barbell and belt) were simultaneously validated to force plate data, where the nature of bias was analysed (systematic vs random). The within-session and between-session reliability of both attachment sites were compared to force plate data using a test-retest protocol of two sets of 5 CMJs separated by 7 days. The LPT provided highly reliable and valid measures of peak force, mean force, mean power, and jump height, where the bias was mostly systematic (r2 > 0.7; ICC > 0.9). Peak velocity, mean velocity, and peak power were in very good agreement with the force plate and were highly reliable (r2 > 0.5; ICC > 0.7). Therefore, both attachment sites produced similar results with a systematic bias compared to force plate data. Thus, both attachment sites seem to be valid for assessing CMJs when the measuring tool and site remain consistent across measurements. However, if LPT data are to be compared to force plate data, recalculation equations should be used.  相似文献   

17.
The purposes of this study were to determine the validity and test-retest reliability of the 1 repetition maximum (1RM) chain-loaded, free-weight bench press (CBP) and to examine possible learning effects that may occur between the test-retest measurements. Nine resistance-trained men (20.58 +/- 1.31 years, 188.24 +/- 9.29 cm, 92.07 +/- 16.94 kg) and seven resistance-trained women (20.42 +/- 0.98 years, 175.61 +/- 9.32 cm, 73.61 +/- 10.80 kg) participating in Division II college basketball completed this study. Two familiarization sessions took place using light to moderate loads to learn proper technique. The subjects completed a 1RM test on the traditional plate-loaded bench press 4 days before completion of the CBP 1RM, which was followed by 4 days of rest before completing the retest. Intraclass correlation coefficients (ICC) and the percent coefficients of variation (CV) were used to determine relative and absolute test-retest reliability. Concurrent validity was determined from the Pearson correlation coefficients between the CBP and the plate-loaded bench press. Test-retest differences were analyzed with the paired t-test. ICC and CV for the men (r = 0.99, 1.4%) and women (r = 0.93, 3.5%), respectively indicate that highly reproducible 1RM scores can be found with the CBP. High validity was also found with high correlations between the CBP and plate-loaded bench press for the men (r = 0.95) and women (r = 0.80). A statistically significant (p = 0.04) but clinically small (2.57 kg) shift in the mean occurred between the CBP test and retest for the men, whereas no change occurred for the women. The data indicate that valid and reliable 1RM scores can be found after two familiarization sessions in men and women athletes who have previous resistance training experience.  相似文献   

18.
A bootstrap procedure was used to determine the statistical precision of estimates of mean and peak spinal loads during lifting as function of the numbers of subjects and measurements per subject included in a biomechanical study. Data were derived from an experiment in which 10 subjects performed 360 lifting trials each. The maximum values per lift of the lumbar flexion angle, L5S1 sagittal plane moment, and L5S1 compression force were determined. From the data set thus compiled, 3000 samples were randomly drawn for each combination of number of subjects and number of measurements considered. The coefficients of variation of mean and peak (defined as mean plus 2 standard deviations) spinal loads across these samples were calculated. The coefficients of variation of the means of the three parameters of spinal load decreased as a linear function of the number of subjects to a power of about -0.48 and number of measurements to a power of about -0.06, while the corresponding powers for peak loads were about -0.44 and -0.11.  相似文献   

19.
Studies seeking to determine the effects of gait retraining through biofeedback on peak tibial acceleration (PTA) assume that this biometric trait is a valid measure of impact loading that is reliable both within and between sessions. However, reliability and validity data were lacking for axial and resultant PTAs along the speed range of over-ground endurance running. A wearable system was developed to continuously measure 3D tibial acceleration and to detect PTAs in real-time. Thirteen rearfoot runners ran at 2.55, 3.20 and 5.10 m·s−1 over an instrumented runway in two sessions with re-attachment of the system. Intraclass correlation coefficients (ICCs) were used to determine within-session reliability. Repeatability was evaluated by paired T-tests and ICCs. Concerning validity, axial and resultant PTAs were correlated to the peak vertical impact loading rate (LR) of the ground reaction force. Additionally, speed should affect impact loading magnitude. Hence, magnitudes were compared across speeds by RM-ANOVA. Within a session, ICCs were over 0.90 and reasonable for clinical measurements. Between sessions, the magnitudes remained statistically similar with ICCs ranging from 0.50 to 0.59 for axial PTA and from 0.53 to 0.81 for resultant PTA. Peak accelerations of the lower leg segment correlated to LR with larger coefficients for axial PTA (r range: 0.64–0.84) than for the resultant PTA per speed condition. The magnitude of each impact measure increased with speed. These data suggest that PTAs registered per stand-alone system can be useful during level, over-ground, rearfoot running to evaluate impact loading in the time domain when force platforms are unavailable in studies with repeated measurements.  相似文献   

20.
The purpose of this study was to establish validity and reliability evidence for the medicine ball throw test for kindergarten students, an underrepresented group in the literature. The subjects were 105 students, 5-7 years old, BMI 17.44 +/- 3.17 kg x m(-2), 43% female and 57% male. Intraclass correlation coefficients (ICCs) were used to examine reliability, and Pearson correlation coefficients and a paired t-test were used to examine validity. To accomplish this, the kindergarten students completed the medicine ball throw test on two different days and the modified pull-up test, the "criterion" measure, on another day. For the medicine ball throw, each student sat on the floor before throwing the medicine ball forward like a chest pass three times. The medicine ball throw was highly reliable both within 1 day (ICCs = 0.93 and 0.94 for day 1 and day 2, respectively) and across 2 days (ICC = 0.88), with all reliability estimates over the acceptable level of 0.80. The medicine ball throw scores were positively related with height (r = 0.34) and weight (r = 0.34), and there was a significant difference between the 5-year-old group (mean +/- SD; 111.78 +/- 34.93) and the 6-year-old group (135.60 +/- 39.77), t = -3.23, p = 0.002, which supports correlational and known-difference evidence of validity for the medicine ball throw test. Even though no correlation was found between the medicine ball throw test and the modified pull-up test, r = -0.04, other forms of validity evidence (i.e., known-difference and correlational) were apparent. In conclusion, the medicine ball throw test seems to be a valid and reliable measure of upper-body strength for kindergarten children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号