首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leaves of quaking aspen (Populus tremuloides Michx.) have a flattened petiole that allows them to quake (oscillate and roll) under low wind velocities. It was hypothesized that this adaptation might enable the plant to respond to windy conditions that would increase transpirational losses. No effects of wind with or without leaf quaking on stomatal resistance were observed under controlled conditions in the field. If wind and leaf quaking affect stomatal resistance, such effects must be small in comparison to those caused by other factors such as leaf water potential and ambient humidity.  相似文献   

2.
南江  赵晓英  原慧  张琳琳 《生态学报》2014,34(20):5758-5765
植物的表型特征是对环境适应的结果。霸王(Zygophyllum xanthoxylum)和木本猪毛菜(Salsola arbuscula)是新疆达坂城大风区的主要植物,也是该区植被恢复潜在的先锋植物。在达坂城柴窝堡,通过野外盆栽实验,对霸王和木本猪毛菜持续吹风和遮风处理90 d,定量分析这两种植物在遮风和不遮风环境下其地上部分的生长和空间构型差异。结果表明:(1)与遮风下的相比,自然大风中的霸王和木本猪毛菜其株高、叶长度、单叶面积、单株叶面积均减小,顺风向基径均增大,尤其是霸王,其株高减小了一半多。木本猪毛菜的叶片数量增多,叶宽增大,霸王的叶片数量减少、叶宽度、叶柄长度、叶柄直径均减小;(2)遮风下的木本猪毛菜其植冠在四个方向均匀生长,而自然大风中的植冠空间构型在迎风面和背风面出现明显的不对称,一级分枝数增多,主茎弯曲角度、枝倾角、叶倾角均减小。霸王没有出现一级分枝,主茎弯曲角度减小,叶倾角增大。可见,霸王主要通过减小地上部分各器官来响应大风环境,而木本猪毛菜除减小各器官之外,还减小各器官之间的角度,形成更紧凑的构型,以此适应大风环境。  相似文献   

3.
Guapira graciliflora and Neea theifera are taxonomically related species of the tribe Pisoneae. Both species are found in the same environment, the Brazilian Cerrado, and therefore, are subjected to similar selective pressures. These species occur in oligotrophic environments, yet contain high concentrations of nitrogen in their leaves. The present study was carried out to investigate the ecological role of nitrogen in herbivory on these species. The differences in the N content, compositions of secondary N-metabolites, mechanical resistance, and water content between their leaves indicate that these species have different adaptations as defense mechanisms. In both species, their high nitrogen content seems to promote herbivory. The presence of secondary nitrogen metabolites does not prevent the species from suffering intense damage by herbivores on their early leaves. The herbivory rates observed were lower for mature leaves of both species than for young leaves. In G. graciliflora, nutritional content and leaf hardness are the most important variables correlated with reduction of herbivory rates, whereas in N. theifera, N compounds are also correlated with herbivory rates. Despite the differences in the strategies of these two species, they exhibit a similar efficiency of protection against natural enemies because their total herbivory rates are similar. The difference in their N defense allocation may imply benefits for survival under Cerrado conditions. We briefly discuss the oligotrophic habitat conditions of the studied plants and possible advantages of their strategies of N accumulation and metabolic uses.  相似文献   

4.
Frequency-dependent prey choice by natural enemies may influence the coexistence of multiple prey types, but little is known about whether frequency-dependent foraging choice occurs in herbivory on plants showing resistance polymorphism within a single population. Here we examined frequency-dependent foraging by a crucifer-feeding leaf beetle, Phaedon brassicae, on trichome-producing (hairy) and trichomeless (glabrous) plants coexisting within a natural population of the perennial herb Arabidopsis halleri subsp. gemmifera. Larvae of P. brassicae fed on hairy leaves showed slower growth than those fed on glabrous leaves. Although adult beetles consumed similar amounts of leaves when they were fed either hairy or glabrous leaves in no-choice conditions, our choice experiment showed that adult beetles fed at less than the proportionally expected level on hairy leaves compared to glabrous leaves when the hairy leaves were less or equally abundant. Both types of leaves were consumed at the proportionally expected levels when the hairy leaves were more abundant than the glabrous leaves. In a natural population, the leaf damage on the hairy plants was negatively correlated with the local proportion of the glabrous plants in a 1-m diameter patch across 2 years, while correlations between the leaf damage on the glabrous plants and their proportion differed between the 2 years. Additionally, we found five glucosinolates in leaves of A. halleri, but their accumulation did not differ between hairy and glabrous plants. Our experimental results indicate that hairy plants incur less herbivory by P. brassicae when glabrous plants are abundant. The field pattern provides evidence suggestive of frequency-dependent herbivory acting on hairy plants. The present study highlights one of the putative mechanisms of maintaining plant resistance polymorphism.  相似文献   

5.
Boundary layer conductance of the leaves of some tropical timber trees   总被引:9,自引:7,他引:2  
Abstract The boundary layer conductance of brass models of leaves exposed in a wind tunnel was determined from their cooling characteristics. Conductances were generally very low, as expected from large leaves. Nusselt numbers were calculated from the rates of heat loss, so that the results could be compared with established theory. There was generally good agreement between observed and calculated values. Leaves with veins displayed an apparent transition from a laminar to a turbulent boundary layer, and so did leaves inclined at an angle from the horizontal. In still air the observed rates of heat loss by natural convection were substantially higher than those calculated.  相似文献   

6.
The approach and landing responses of female Mamestra brassicae (L.) (Lepidoptera: Noctuidae) to visual cues from artificial plant leaves of different shapes and presence/absence of cabbage plant odour were investigated in a laboratory wind tunnel. The leaves were painted with cadmium yellow colour and observed under dim red light. Females showed oriented flight towards plant odours but landed significantly more often when the odour was presented with an artificial leaf. In three-choice tests, the shape of the leaf targets (circle, square or triangle) did not influence the female response. However, the size of the target did influence the insect response: the females preferred landing on square targets with sides of 5 or 10 cm rather than on the largest target, with sides of 15 cm. The orientation of the target influenced the insects' response: females landed significantly more often on the target positioned vertically than horizontally.  相似文献   

7.
The study of plant responses to environmental stress factors is essential for management of plant systems and for anticipating their response to climate change. The main goal of this study was to determine morphological and physiological responses of Nothofagus obliqua and N. nervosa seedlings to light and temperature, two of the main stress factors acting in their current natural distribution in NW Patagonia. Responses to light were evaluated analyzing growth and survival, as well as morphological and physiological traits related to them, in seedlings subjected to three contrasting light conditions (full-sun conditions, 50% of sunlight and 20% of sunlight) during one growth season. Temperature photosynthetic responses were evaluated in seedlings subjected to temperature treatments between ?5 and 40°C for 2 and 4 h. Growth rate and biomass partition were similar between light treatments in both species. High apical meristem damage and decreased photosynthetic capacity of preformed leaves were observed under full-sun conditions, suggesting that high light levels have a deleterious effect on plant yield. Both species produced neoformed leaves during the growing season with better photosynthetic capacity than preformed leaves under full sun conditions, contributing to plant acclimation. Almost no plasticity was observed in morphological traits in response to shade. Both species differed in optimum temperature for photosynthesis, with a wider temperature range at which high photosynthesis is maintained in N. obliqua. In both species the higher values of net photosynthetic rate were found at higher temperatures than the mean annual temperature of its current natural distribution range. Under no water-stress conditions, future higher temperatures could increase carbon fixation of these species, with a little advantage of N. obliqua if temperature variance is high. Synergy effect of various environmental stress factors, particularly considering cultivation of these species outside their current natural distribution sites require further studies.  相似文献   

8.
Cottonwood (Populus deltoides, Marsh.) leaves are amphistomatous and have an adaptation in their petiole which allows them to oscillate in wind. A possible function of these oscillations in enhancing gas exchange was studied.

Cottonwood leaves were found to oscillate in the presence of wind velocities frequently encountered in nature. A pressure differential across the leaf was shown to result in bulk flow of air through that leaf. Oscillating a cottonwood leaf at frequencies found to occur in nature was found to increase the rate of O2 flux through the leaf. The measured changes in boundary layer resistances during oscillations were found to be insufficient to account for the increased O2 flux. Thus, the bulk flow of air through an oscillating cottonwood leaf results in a decreased total resistance which is typically 25% less than that of a still leaf.

  相似文献   

9.
周瑞莲  逄金强  宋玉 《生态学报》2022,42(1):196-208
以海岸防风固沙优势树种紫穗槐(Amorpha fruticosa Linn)和黑松(Pinus thunbergii Parl)为研究对象,利用野外便携式沙风洞用间歇风吹模拟自然阵风,通过分析间歇强净风(18m/s)和强风沙流(172.93g cm-1 min-1)吹袭过程中和风后恢复中,两树种叶片膜脂过氧化产物含量、抗氧化酶活力、渗透调节物含量的变化,以探讨其对自然阵风吹袭响应机制及自愈修复生理机制。结果表明,自然状况下,紫穗槐和黑松叶片相对含水量(RWC)相近,但抗氧化酶活力及种类和渗透调节物含量及种类上存在差异。紫穗槐叶片丙二醛含量(MDA)、脯氨酸含量及过氧化氢酶(CAT)和过氧化物酶(POD)活力分别较黑松高93.3%、78.6%、118.8%、6.5倍。而黑松可溶糖含量和超氧化物歧化酶(SOD)活力较紫穗槐高111.5%和28.2%。在间歇净风和风沙流处理中,随着风吹袭次数增多,黑松叶片RWC趋于小幅降低,可溶性糖含量及POD、SOD、CAT活力呈小幅波动式变化;紫穗槐叶片RWC大幅下降,伴随着脯氨酸含量,POD、CAT、SOD活...  相似文献   

10.
王欣禹  周勇  任安芝  高玉葆 《生态学报》2014,34(23):6789-6796
以感染内生真菌的天然禾草羊草为实验材料,通过体外纯培养条件下的内生真菌、感染内生真菌的离体叶片和在体叶片对3种病原菌的抑菌实验,以探讨内生真菌对宿主植物羊草在抗病性方面的贡献。结果表明:体外纯培养条件下,分离自羊草的内生真菌Epichlobromicola对新月弯孢(Curvularia lunata)、根腐离蠕孢(Bipolaris sorokiniana)和枝孢霉(Cladosporium sp.)这3种病原菌都具有抑制作用,抑菌率分别达56.22%,46.93%和45.15%,且内生真菌培养滤液可以有效抑制这3种病原菌的孢子萌发,平均萌发率分别为30.4%,15.7%和16.4%;宿主植物叶片在离体条件下,内生真菌感染可以有效降低羊草叶片受C.lunata和C.sp.侵染后的病斑数或病斑长度,但对B.sorokiniana不起作用,甚至提高了叶片的病斑数及病斑长度,而离体叶片提取液对不同病原菌均有不同程度的抑制作用;在体条件下,内生真菌均可以通过降低叶片病斑数来增强羊草植株对这3种病原菌的抗性。由此看来,内生真菌E.bromicola对宿主植物羊草在抗病原菌侵染方面有一定的增益作用。  相似文献   

11.
In order to fully understand the adaptive strategies of young leaves in performing photosynthesis under high irradiance, leaf orientation, chloroplast pigments, gas exchange, as well as chlorophyll a fluorescence kinetics were explored in soybean plants. The chlorophyll content and photosynthesis in young leaves were much lower than that in fully expanded leaves. Both young and fully expanded leaves exhibited down-regulation of the maximum quantum yield (FV/FM) at noon in their natural position, no more serious down-regulation being observed in young leaves. However, when restraining leaf movement and vertically exposing the leaves to 1200 μmol m−2 s−1 irradiance, more pronounced down-regulation of FV/FM was observed in young leaves; and the actual photosystem II (PS II) efficiency (ФPSII) drastically decreased with the significant enhancement of non-photochemical quenching (NPQ) and ‘High energy’ quenching (qE) in young leaves. Under irradiance of 1200 μmol m−2 s−1, photorespiration (Pr) in young leaves measured by gas exchange were obviously lower, whereas the ratio of photorespiration/gross photosynthetic rate (Pr/Pg) were higher than that in fully expanded leaves. Compared with fully expanded leaves, young leaves exhibited higher xanthophyll pool and a much higher level of de-epoxidation components when exposure to high irradiance. During leaf development, the petiole angle gradually increased all the way. Especially, the midrib angle decreased with the increasing of irradiance in young leaves; however, no distinct changes were observed in mature leaves. The changes of leaf orientation greatly reduced the irradiance on young leaf surface under natural positions. In this study, we suggested that the co-operation of leaf angle, photorespiration and thermal dissipation depending on xanthophyll cycle could successfully prevent young leaves against high irradiance in field.  相似文献   

12.
Many field surveys have shown that naturally ventilated buildings are favorable to human thermal comfort and may allow higher cooling temperatures than air-conditioned buildings. Recreating natural wind characteristics with a mechanical cooling system may diminish the drawbacks of conventional cooling systems such as drafts and high energy demands.Natural wind characteristics (wind velocity, direction, turbulent intensity, temperature and relative humidity) were recorded in a mountain environment and correlated with the human thermal sensation of 48 subjects. Natural wind fluctuation characteristics were analyzed using the Fast Fourier Transform (FFT) analysis. The dynamic characteristics of natural wind were averaged through the power spectrum exponent (β−value), which represents the energy distribution of the turbulent flow of natural wind. The power spectrum exponent (β−value) of the natural wind will decrease when the mean velocity increases, while it will increase when the turbulent intensity increases. The power spectrum exponent (β−value) was correlated (Spearman's rank coefficient=0.56, p<0.001) with thermal comfort. The power spectrum exponent (β-value) for people feeling comfortable has a median value of 1.62 [1.41–1.80 for the first and third quartiles, respectively] and the β−value for people feeling uncomfortable has a median value of 1.10 [0.97–1.25].  相似文献   

13.
Fresh produce is known to carry nonpathogenic epiphytic microorganisms. During agricultural production and harvesting, leafy greens can become contaminated with antibiotic-resistant pathogens or commensals from animal and human sources. As lettuce does not undergo any inactivation or preservation treatment during processing, consumers may be exposed directly to all of the (resistant) bacteria present. In this study, we investigated whether lettuce or its production environment (irrigation water, soil) is able to act as a vector or reservoir of antimicrobial-resistant Escherichia coli. Over a 1-year period, eight lettuce farms were visited multiple times and 738 samples, including lettuce seedlings (leaves and soil), soil, irrigation water, and lettuce leaves were collected. From these samples, 473 isolates of Escherichia coli were obtained and tested for resistance to 14 antimicrobials. Fifty-four isolates (11.4%) were resistant to one or more antimicrobials. The highest resistance rate was observed for ampicillin (7%), followed by cephalothin, amoxicillin-clavulanic acid, tetracycline, trimethoprim, and streptomycin, with resistance rates between 4.4 and 3.6%. No resistance to amikacin, ciprofloxacin, gentamicin, or kanamycin was observed. One isolate was resistant to cefotaxime. Among the multiresistant isolates (n = 37), ampicillin and cephalothin showed the highest resistance rates, at 76 and 52%, respectively. E. coli isolates from lettuce showed higher resistance rates than E. coli isolates obtained from soil or irrigation water samples. When the presence of resistance in E. coli isolates from lettuce production sites and their resistance patterns were compared with the profiles of animal-derived E. coli strains, they were found to be the most comparable with what is found in the cattle reservoir. This may suggest that cattle are a potential reservoir of antimicrobial-resistant E. coli strains in plant primary production.  相似文献   

14.
WILSON  JULIA 《Annals of botany》1980,46(3):303-311
Exposure to wind produces permanent abrasive damage to Acerpseudoplatanus L. leaves in the form of brown lesions, holes,distortions and tearing of the lamina. The zones of leaf thatare readily damaged change as the leaves expand and their topographyis altered. In the field, most damage was sustained early in the seasondespite the persistence of wind throughout the year. Wind tunnelstudies demonstrated that young expanding leaves were far moresusceptible to wind than mature leaves and that the percentagearea damaged increased linearly with windspeed. Acer pseudoplatanus L., sycamore, wind, leaf damage  相似文献   

15.
If the evaporation is uniform on a flat exposed leaf, forced convection will also be nearly uniform, and the leaf temperature will vary with the square root of the distance from the leading edge. Then the resistance expressed in terms of the proper, i.e., average, temperature has the same value as the resistance of a leaf at uniform temperature. Compared to a steady laminar flow, the turbulence of a realistic wind decreases the resistance by a constant factor of about 2.5. The same constant factor was observed whether the leaf was flapping or not, when the wind velocity was not too low.  相似文献   

16.
The stomatal resistance of individual leaves of young cotton plants (Gossypium hirsutum L. var. Stoneville 213) was measured during a period of soil moisture stress under conditions of constant evaporative demand. When plants were subjected to increasing soil water stress, increases in stomatal resistance occurred first on the lower leaves and the stomata on the upper surfaces were the most sensitive to decreasing leaf-water potential. Stomatal closure proceeded from the oldest leaves to the youngest as the stress became more severe. This apparent effect of leaf age was not due to radiation differences during the stress period. Radiation adjustments on individual leaves during their development altered the stomatal closure potential for all leaves, but did not change the within-plant pattern. Our data indicate that no single value of leaf water potential will adequately represent a threshold for stomatal closure in cotton. Rather, the stomatal resistance of each leaf is uniquely related to its own water potential as modified by age and radiation regime during development. The effect of age on stress-induced stomatal closure was not associated with a loss of potassium from older leaves. Increases in both the free and bound forms of abscisic acid were observed in water-stressed plants, but the largest accumulations occurred in the youngest leaves. Thus, the pattern of abscisic acid accumulation in response to water stress did not parallel the pattern of stomatal closure induced by water stress.  相似文献   

17.
The results of multiyear studies of gas exchange in intact attached leaves of several willow species (Salix sp.) were analyzed. Measurements were performed with a portable Li-6400 infrared gas analyzer both on plants in their natural environment and on rooted cuttings grown in a greenhouse. Individual attached leaves were placed into the leaf chamber where climatic conditions were either similar to or different from those outside the chamber. The maximal rates of net photosynthesis (P n) and transpiration (E) were only observed with the provision that the environmental variables inside and outside the chamber were identical. On rainy or cloudy days, the P n and E values observed under optimum conditions inside the leaf chamber were lower than their potential maxima by 12–18% and 35–45%, respectively. Deviation of temperature in the chamber by 5–7°C from the external level and fluctuations of ambient temperature affected P n but not E rates of tested leaves. Variations in relative air humidity in the chamber directly influenced E but had no effect on P n of attached leaves. It was shown that the maximum rates of gas exchange in the attached willow leaf could be only attained by providing optimum conditions for the whole plant.  相似文献   

18.
Crassulacean acid metabolism (CAM) was investigated in leaves and stems of the succulent C4 dicot Portulaca oleracea L. Diurnal acid fluctuations, CO2 gas exchange, and leaf resistance were monitored under various photoperiod and watering regimes. No CAM activity was seen in well watered plants grown under 16-hour days. Under 8-hour days, however, well watered plants showed a CAM-like pattern of acid fluctuation with amplitudes of 102 and 90 microequivalents per gram fresh weight for leaves and stems, respectively. Similar patterns were also observed in detached leaves and defoliated stems. Leaf resistance values indicated that stomata were open during part of the dark period, but night acidification most likely resulted from refixation of respiratory CO2. In water-stressed plants maximum acid accumulations were reduced under both long and short photoperiods. At night, these plants showed short periods of net CO2 uptake and stomatal opening which continued all night long during preliminary studies under natural environmental conditions. Greatest acid fluctuations, in P. oleracea, with amplitudes of 128 microequivalents per gram fresh weight, were observed in water-stressed plants which had been rewatered, especially when grown under short days. No net CO2 uptake took place, but stomata remained open throughout the night under these conditions. These results indicate that under certain conditions, such as water stress or short photoperiods, P. oleracea is capable of developing an acid metabolism with many similarities to CAM.  相似文献   

19.
Cassava (Manihot esculenta) is a major food staple in sub-Saharan Africa, which is severely affected by cassava brown streak disease (CBSD). The aim of this study was to identify resistance for CBSD as well as to understand the mechanism of putative resistance for providing effective control for the disease. Three cassava varieties; Kaleso, Kiroba and Albert were inoculated with cassava brown streak viruses by grafting and also using the natural insect vector the whitefly, Bemisia tabaci. Kaleso expressed mild or no disease symptoms and supported low concentrations of viruses, which is a characteristic of resistant plants. In comparison, Kiroba expressed severe leaf but milder root symptoms, while Albert was susceptible with severe symptoms both on leaves and roots. Real-time PCR was used to estimate virus concentrations in cassava varieties. Virus quantities were higher in Kiroba and Albert compared to Kaleso. The Illumina RNA-sequencing was used to further understand the genetic basis of resistance. More than 700 genes were uniquely overexpressed in Kaleso in response to virus infection compared to Albert. Surprisingly, none of them were similar to known resistant gene orthologs. Some of the overexpressed genes, however, belonged to the hormone signalling pathways and secondary metabolites, both of which are linked to plant resistance. These genes should be further characterised before confirming their role in resistance to CBSD.  相似文献   

20.
Leaf resistance for water vapor (total diffusion resistance minus boundary layer resistance), transpiration, and leaf temperature were measured in attached leaves of greenhouse-grown Xanthium strumarium L. plants that had been pretreated for 72 hours with high (40 C day, 35 C night), or low (10 C day, 5 C night) air temperatures. Measurements were made in a wind tunnel at light intensity of 1.15 cal cm−2 min−1, air temperatures between 5 and 45 C, and wind speed of 65 cm sec−1. Leaf resistances in low temperature pretreated plants were higher (8 to 27 sec cm−1) than in controls or high temperature pretreated plants (0.5 to 3 sec cm−1) at leaf temperatures between 5 and 25 C. Thus, the pretreatment influenced stomatal aperture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号