首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two cellulases from Scytalidium thermophilum were purified and characterized, exhibiting tolerance to glucose and cellobiose. Characterization of purified cellulases I and II by mass spectrometry revealed primary structure similarities with an exoglucanase and an endoglucanase, respectively. Molecular masses were 51.2 and 45.6 kDa for cellulases I and II, respectively, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellulases I and II exhibited isoelectric points of 6.2 and 6.9 and saccharide contents of 11 and 93 %, respectively. Optima of temperature and pH were 60–65 °C and 4.0 for purified cellulase I and 65 °C and 6.5 for purified cellulase II. Both cellulases maintained total CMCase activity after 60 min at 60 °C. Cysteine, Mn2+, dithiotreitol and ß-mercaptoethanol-stimulated cellulases I and II. The tolerance to cellulose hydrolysis products and the high thermal stabilities of Scytalidium cellulases suggest good potential for industrial applications.  相似文献   

2.
Cellobiohydrolases are the dominant components of the commercially relevant Trichoderma reesei cellulase system. Although natural cellulases can totally hydrolyze crystalline cellulose to soluble sugars, the current enzyme loadings and long digestion times required render these enzymes less than cost effective for biomass conversion processes. It is clear that cellobiohydrolases must be improved via protein engineering to reduce processing costs. To better understand cellobiohydrolase function, new simulations have been conducted using charmm of cellobiohydrolase I (CBH I) from T.reesei interacting with a model segment (cellodextrin) of a cellulose microfibril in which one chain from the substrate has been placed into the active site tunnel mimicking the hypothesized configuration prior to final substrate docking (i.e., the +1 and +2 sites are unoccupied), which is also the structure following a catalytic bond scission. No tendency was found for the protein to dissociate from or translate along the substrate surface during this initial simulation, nor to align with the direction of the cellulose chains. However, a tendency for the decrystallized cellodextrin to partially re-anneal into the cellulose surface hints that the arbitrary starting configuration selected was not ideal.  相似文献   

3.
Effect of hydrogen bond breaker (urea) addition on the enzymatic hydrolysis of Avicel and eucalyptus pretreated by dilute acid (Eu-DA) was investigated. Urea enhanced the enzymatic hydrolysis of Eu-DA at 50 or 30 °C when the concentration of urea was below 60 g/L, while it inhibited the hydrolysis of Avicel. Low concentration urea (<?240 g/L) had little effect on the cellulase spatial structure and its activity. But it decreased cellulase binding to cellulose surface to inhibit the cellulose hydrolysis. Meanwhile, urea obviously prevented the adsorption of cellobiohydrolase I (CBHI) on the lignin in spite of little effect on the adsorption of β-glucosidase (BGL) and two endoglucanases (EGIII and EGV) on lignin. It was proposed that urea enhanced the enzymatic efficiency of Eu-DA by decreasing the cellulase adsorption on lignin surface.  相似文献   

4.
Three strains of Clostridium thermocellum obtained from various sources were found to have nearly identical deoxyribonucleic acid guanosine plus cytosine contents that ranged from 38.1–39.5 mole-%. All strain examined fermented only cellulose and cellulose derivatives, but not glucose, or xylose or other sugars. The principal cellulose fermentation products were ethanol, lactate, acetate, hydrogen and carbon dioxide. Growth of C. thermocellum on cellulose resulted in the production of extracellular cellulase that was non-oxygen labile, was thermally stable at 70° C for 45 min and adsorbed strongly on cellulose. Production of cellulase during fermentation correlated linearly with growth and cellulose degradation. Both the yield and specific activity of crude cellulase varied considerably with the specific growth substrates. Highest cellulase yield was obtained when grown on native cellulose, -cellulose and low degree of polymerization cellulose but not carboxymethylcellulose or other carbohydrate sources. Cellulase activity was not detected when cells were grown on cellobiose. Crude extracellular protein preparations lacked proteolytic and cellobiase activity. The pH and temperafure optima for endoglucanase activity were 5.2 and 65° C, respectively, while that of the exoglucanase activity were 5.4 and 64° C, respectively. The specific activity at 60° c for exoglucanase and endoglucanase of crude cellulase obtained from cells grown on cellulose (MN 300) was 3.6 moles reducing sugar equivalents released per h (unit)/mg of protein and 1.5 mole reducing sugar equivalent released per min (unit)/mg of protein, respectively. The yield of endoglucanase was 125 units per g of cellulose MN 300 degraded and that of exoglucanase was 300 units per g of cellulose MN 300 degraded. Glucose and cellobiose were the hydrolytic end products of crude cellulase action on cellulose, cellotraose and cellotriose in vitro.  相似文献   

5.
超临界CO2流体对纤维素酶催化反应的影响   总被引:4,自引:0,他引:4  
超临界二氧化碳流体预处理对纤维素超分子结构及纤维素酶催化反应有重要影响。一定含水量的微晶纤维素用SC-CO2在10MPa,50℃处理30min,其结构发生了有利于进一步被酶解的变化。上述超临界条件单独作用于纤维素酶时,并未造成酶催化活力的降低;但与纤维素共同进行SC—CO2处理时,纤维素酶则失去催化活性,但这种处理却能提高纤维素进一步被酶解的效率。一定范围内处理时的酶用量与酶解效率的增加正相关。纤维素的含水量对SC-CO2处理后的酶解效率有显影响。  相似文献   

6.
Specific quantifications of the major cellulolytic components of the Trichoderma reesei enzyme complex, i.e., endoglucanases I and III and cellobiohydrolases I and II, are described and, employing a defined mixture of these four cellulases reconstituted according to the composition of the native Trichoderma cellulase complex, used to determine the binding of each individual component onto filter paper. During substrate degradation by this enzyme mixture, the specific adsorption of each individual cellulase gradually increases and no preferential binding of one enzyme component in any particular phase of cellulose hydrolysis is found. T. reesei cellobiohydrolases I and II admixed with endoglucanases I and III represent a "full-value" cellulase system that is capable of degrading semicrystalline cellulose efficiently. In comparison with the crude Trichoderma enzyme complex, almost identical adsorption properties and similar hydrolytic efficiency are found for the reconstituted mixture. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
Unusual fractions of cellulose microfibrils from woody material with dimensions of hundreds of nanometers in length and single digit angstrom thickness were obtained by intensive sonication of TEMPO-oxidized cellulose fibers. These cellulose microfibril fragments, composed of many mono- and bilayer molecular sheets, were analyzed with scattering and spectroscopy techniques to understand the structural changes at the supramolecular level. XRD data indicated that sonication breaks the cellulose microfibrils along its (200) planes, yet some form of the Iβ crystalline structure is still retained with reduced crystallinity. The Raman and FTIR analysis indicated structural changes to the cellulose microfibrils do not occur until after sonication; furthermore, AFM observation indicates that the structural changes began to occur within 5 min of sonication. An altered supramolecular structure is evident after sonication: major features from cellulose I are preserved, although certain spectral features similar to mercerized and ball milled cellulose appeared in its FTIR and Raman spectra. These spectral differences are traced to changes in the methine environment, hydroxymethyl conformations, and skeletal vibrations. By integrating the present findings and previous research, a cellulose molecular sheet delamination scheme is proposed to describe this microfibril fragmentation along its (200) plane.  相似文献   

8.
Recent progress in cellulose biosynthesis   总被引:4,自引:0,他引:4  
Cellulose comprises the major polymer of the plant cell wall. It consists of a set of parallel chains composed of glucans and these chains are highly oriented to form a structure known as a microfibril. The orientation of the microfibrils controls the extension of the direction of the plant cell. Extensive studies on the cellulose biosynthesis have been carried out for over three decades, and recently (1996) genes for cellulose biosynthesis in plants (CesA) were isolated. In the year 2002, a specific primer for cellulose biosynthesis reaction has been discovered and cellulose synthetic activity has been also confirmed by recombinant protein derived from the plant CesA gene. Furthermore, other proteins involved in cellulose biosynthesis besides CesA proteins were also proposed at the same time. One of these proteins, Korrigan cellulase, was suggested to act by removing sitosterol from the primer for biosynthesis reaction of cellulose. A membrane-bound sucrose synthase was also suggested to provide UDP-glucose as a substrate for cellulose biosynthesis. On the basis of these results, a new pathway for cellulose biosynthesis was proposed. Now, the research field of cellulose biosynthesis is facing a major turning point. Electronic Publication  相似文献   

9.
Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear β-1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo-β-1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an (α/α)(6)-barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades β-1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.  相似文献   

10.
Summary Cellobiose oxidase from Phanerochaete chrysosporium was used for continuous monitoring of cellulase action on microcrystalline cellulose (Avicel). Two protocols are described, the parameter monitored being either the decline in electrode potential as ferricyanide is reduced or consumption of dioxygen. Most experiments used a commercial cellulase preparation from Trichoderma reesei and ferricyanide as acceptor. Within 1 min of an addition of cellulase, ferricyanide reduction reached a steady rate. This was converted into a rate of production of substrate for celobiose oxidase, in mol·min–1. Experiments were conducted either with a constant concentration of cellulase and increasing Avicel, or with constant Avicel and increasing cellulase. Kinetic analysis of the experiments with constant cellulase indicated a K mof 4.8 ± 1.0 (g cellulose)·1–1, which was close to the value predicted from binding studies. The specific activity of the cellulase was measured as 375±25 mol·(g cellulase)–1·min–1 in experiments with a high cellulose concentration, but was less than half this value when the cellulose was saturated with cellulase. The maximal rate of cellulose degradation was 9.6±1.3 mol·(g cellulose)–1·min–1.  相似文献   

11.
Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.  相似文献   

12.
Biomass contains cellulose, xylan and lignin in a complex interwoven structure that hinders enzymatic hydrolysis of the cellulose. To separate these components in yellow poplar biomass, we sequentially pretreated with dilute sulfuric acid and enzymatically-generated peracetic acid. In the first step, the dilute acid with microwave heating (140°C, 5 min) hydrolyzed 90% of xylan. The xylose yield in hydrolysate after dilute acid pretreatment was 83.1%. In the second step, peracetic acid (60°C, 6 h) removed up to 80% of lignin. This sequential pretreatment fractionated biomass into xylan and lignin, leaving a solid residue enriched in cellulose (~80%). The sequential pretreatment enhanced enzymatic digestibility of the cellulase by removal of the other components in biomass. The glucose yield after enzymatic hydrolysis was 90.5% at a low cellulase loading (5 FPU/g of glucan), which is 1.6 and 18 times higher than for dilute acid-pretreated biomass and raw biomass, respectively. This novel sequential pretreatment with dilute acid and peracetic acid efficiently separates the three major components of yellow poplar biomass, and reduces the amount of cellulase needed.  相似文献   

13.
The cellulase system of Clostridium papyrosolvens C7 was fractionated by means of ion-exchange chromatography into at least seven high-molecular-weight multiprotein complexes, each with different enzymatic and structural properties. The molecular weights of the complexes, as determined by gel filtration chromatography, ranged from 500,000 to 660,000, and the isoelectric points ranged from 4.40 to 4.85. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the complexes showed that each complex had a distinct polypeptide composition. Avicelase, carboxymethyl cellulase, and xylanase activity profiles differed from protein complex to protein complex. Three of the complexes hydrolyzed crystalline cellulose (Avicel). Activity zymograms of gels (following electrophoresis under mildly denaturing conditions) revealed different carboxymethyl cellulase-active proteins in all complexes but xylanase-active proteins in only two of the complexes. The xylanase specific activity of these two complexes was more than eightfold higher than that of the unfractionated cellulase preparation. A 125,000-M(r) glycoprotein with no apparent enzyme activity was the only polypeptide present in all seven complexes. Experiments involving recombination of samples eluted from the ion-exchange chromatography column indicated that synergistic interactions occurred in the hydrolysis of crystalline cellulose by the cellulase system. We propose that the C. papyrosolvens enzyme system responsible for the hydrolysis of crystalline cellulose and xylan is a multicomplex system comprising at least seven diverse protein complexes.  相似文献   

14.
The amount and distribution of wall microfibril synthesis were investigated in the cell-division cycle ofClosterium acerosum. Electron-microscopic examination and a methylation analysis of alkali-extracted wall fragments showed that alkali-extracted wall was mainly composed of microfibrils and that the microfibrils ofC. acerosum were 4-linked glucans, i.e., cellulose. Cellulose synthesis was measured as incorporation of14C, fed to cells as NaHCO3, into extracted wall fragments. Extensive cellulose synthesis was coincident with septum formation, continued for more than 6 h and then ceased. It was found by microautoradiography that cellulose synthesis after cell division was essentially restricted to the expanding new semicells. Such a restricted distribution of cellulose synthesis was maintained for more than 6 h after septum formation, i.e., for more than 2 h after the cessation of expansion; afterwards, cellulose synthesis in some, but not all, cells became extended to the old semicells, and then ceased. Considerable cellulose synthesis also took place in the band-like expanding part of non-divided cells, indicating that cell division was not necessarily required for the induction of cellulose synthesis and the latter was coupled with cell expansion. Extension of cellulose synthesis to old semicells was brought about in divided cells by treatment with 3 mM colchicine, 28 M vinblastine, 50 M isopropyl-N-phenylcarbamate or 1 M isopropyl-N(3-chlorophenyl)carbamate, indicating that microtubules are involved in the limitation of cellulose synthesis to the new semicells.Abbreviations CIPC isopropyl-N(3-chlorophenyl)carbamate - DPO 2,5-diphenyloxazole - IPC isopropyl-N-phenylcarbamate  相似文献   

15.
The cellulose component of native, minimally disturbed pellicles of Acetobacter sylinum has a three-dimensional, microfibrillar, interconnected, ‘brush-wood’ structure. This structure could not originate from a spinneret or extrusion mechanism of cellulose microfibril formation. It may be produced by a mechanism of spontaneous association and post factor crystallization of preformed, transient I → 4β glucans.  相似文献   

16.
T.M. ALCONADA AND M.J. MARTÍNEZ. 1996. Fusarium oxysporum f. sp. melonis produces cellulase and β-glucosidase activities in a medium with glucose and avicel as carbon source. A β-glucosidase from this crude material was purified by gel filtration and ion exchange chromatography successively. This enzyme is a unique band of protein in SDS-PAGE and isoelectric focussing. It had a molecular weight of 66000 and a pI of 5. Using p -nitrophenyl-β-D-glucopyranoside as substrate β-glucosidase shows a K m of 210 μmol 1-1, an optimum pH of 5.5 and an optimum reaction temperature of 60°C, being stable in a pH range of 5–7 for 48 h at room temperature.  相似文献   

17.
Effects of solvent exchange and milling on the solid structure of cellulose were investigated, using small- and wide-angle X-ray scattering and solid-state NMR. The solvent exchange facilitated the dissolution of cellulose in LiCl/DMAc with no change of the crystalline structure of cellulose. In contrast, the milling never facilitated the dissolution of cellulose, though the crystalline structure was almost destroyed. These facts show that the crystalline structure of cellulose hardly affects the dissolution in LiCl/DMAc. The fractal dimensions determined by the small-angle X-ray scattering measurements were increased by the solvent exchange, suggesting that the aggregation state of the cellulose microfibril is affected. It was also suggested by the NMR (1)H spin relaxation time measurements that the solvent exchange enhances the molecular mobility of cellulose and shortens the characteristic length along the microfibril, which allows easier access of the solvent molecule to cellulose.  相似文献   

18.
Monoclonal antibodies have been used to determine the presence of cellobiohydrolases I and II (CBH I and II), and endoglucanase I (EG I) on the surface of conidia from Trichoderma reesei QM 9414 and RUT C-30, and 8 other Trichoderma species. For this purpose, proteins were released from the conidial surface by treatment with a non-ionic detergent (Triton X-100 and -octylglucoside), followed by SDS-PAGE/Western blotting and immunostaining. Both CBH I and II were clearly present, but — unlike in extracellular culture fluids from Trichoderma — CBH II was the predominant cellulase. In T. reesei EG I could not be detected. The higher producer strain T. reesei RUT C-30 exhibited a higher conidial level of CBH II than T. reesei QM 9414. In order to assess the importance of the conidial CBH II level for cellulase induction by cellulose, multiple copies of the chb2 gene were introduced into the T. reesei genome by cotransformation using PyrG as a marker. Stable multicopy transformants secreted the 2- to 4-fold level of CBH II into the culture medium when grown on lactose as a carbon source, but their CBH I secretion was unaltered. Upon growth on cellulose, both CBH I and CBH II secretion was enhanced. Those strain showing highest cellulase activity on cellulose also appeared to contain the highest level of conidial bound CBH II. CBH II was also the predominant conidial cellulase in various other Trichoderma sp. However, roughly the same amount of conidial bound CBH II was detected in all strains, although their cellulase production differed considerably.  相似文献   

19.
Different cellulosic materials were treated with different extraceller microbial enzymes. Changes in structure and properties of the cellulose caused by enzymatic treatment depend on the composition, the type of enzyme and the type of cellulosic materials. Both endoglucanase and crude cellulase have pronounced effects on the structure of cellulose. The variation of crystal structure was found to attack preferentially the (0 0 2) crystal planes for cellulose I during enzymatic hydrolysis.  相似文献   

20.
Monoclonal antibodies (MAbs) specific for cellobiohydrolase I (CBH I) and endoglucanase I (EG I) were conjugated to 10- and 15-nm colloidal gold particles, respectively. The binding of CBH I and EG I was visualized by utilizing the MAb-colloidal gold probes. The visualization procedure involved immobilization of cellulose microfibrils on copper electron microscopy grids, incubation of the cellulose-coated grids with cellulase(s), binding of MAb-colloidal gold conjugates to cellulase(s), and visualization via transmission electron microscopy. CBH I was seen bound to apparent crystalline cellulose as well as apparent amorphous cellulose. EG I was seen bound extensively to apparent amorphous cellulose with minimal binding to crystalline cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号