首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mitochondria can behave as individual oscillators whose dynamics may obey collective, network properties. We have shown that cardiomyocytes exhibit high-amplitude, self-sustained, and synchronous oscillations of bioenergetic parameters when the mitochondrial network is stressed to a critical state. Computational studies suggested that additional low-amplitude, high-frequency oscillations were also possible. Herein, employing power spectral analysis, we show that the temporal behavior of mitochondrial membrane potential (DeltaPsi(m)) in cardiomyocytes under physiological conditions is oscillatory and characterized by a broad frequency distribution that obeys a homogeneous power law (1/f(beta)) with a spectral exponent, beta = 1.74. Additionally, relative dispersional analysis shows that mitochondrial oscillatory dynamics exhibits long-term memory, characterized by an inverse power law that scales with a fractal dimension (D(f)) of 1.008, distinct from random behavior (D(f) = 1.5), over at least three orders of magnitude. Analysis of a computational model of the mitochondrial oscillator suggests that the mechanistic origin of the power law behavior is based on the inverse dependence of amplitude versus frequency of oscillation related to the balance between reactive oxygen species production and scavenging. The results demonstrate that cardiac mitochondria behave as a network of coupled oscillators under both physiological and pathophysiological conditions.  相似文献   

2.
Kazanovich Y  Borisyuk R 《Bio Systems》2002,67(1-3):103-111
We describe a new solution to the problem of consecutive selection of objects in a visual scene by an oscillatory neural network with the global interaction realised through a central executive element (central oscillator). The frequency coding is used to represent greyscale images in the network. The functioning of the network is based on three main principles: (1) the synchronisation of oscillators via phase-locking, (2) adaptation of the natural frequency of the central oscillator, and (3) resonant increase of the amplitudes of the oscillators which work in-phase with the central oscillator. Examples of network simulations are presented to show the reliability of the results of consecutive selection of objects under conditions of constant and varying brightness of the objects.  相似文献   

3.
Neural oscillations occur within a wide frequency range with different brain regions exhibiting resonance-like characteristics at specific points in the spectrum. At the microscopic scale, single neurons possess intrinsic oscillatory properties, such that is not yet known whether cortical resonance is consequential to neural oscillations or an emergent property of the networks that interconnect them. Using a network model of loosely-coupled Wilson-Cowan oscillators to simulate a patch of cortical sheet, we demonstrate that the size of the activated network is inversely related to its resonance frequency. Further analysis of the parameter space indicated that the number of excitatory and inhibitory connections, as well as the average transmission delay between units, determined the resonance frequency. The model predicted that if an activated network within the visual cortex increased in size, the resonance frequency of the network would decrease. We tested this prediction experimentally using the steady-state visual evoked potential where we stimulated the visual cortex with different size stimuli at a range of driving frequencies. We demonstrate that the frequency corresponding to peak steady-state response inversely correlated with the size of the network. We conclude that although individual neurons possess resonance properties, oscillatory activity at the macroscopic level is strongly influenced by network interactions, and that the steady-state response can be used to investigate functional networks.  相似文献   

4.
Oscillating levels of adrenal glucocorticoid hormones are essential for optimal gene expression, and for maintaining physiological and behavioural responsiveness to stress. The biological basis for these oscillations is not known, but a neuronal "pulse generator" within the hypothalamus has remained a popular hypothesis. We demonstrate that pulsatile hypothalamic activity is not required for generating ultradian glucocorticoid oscillations. We show that a constant level of corticotrophin-releasing hormone (CRH) can activate a dynamic pituitary-adrenal peripheral network to produce ultradian adrenocorticotrophic hormone and glucocorticoid oscillations with a physiological frequency. This oscillatory response to CRH is dose dependent and becomes disrupted for higher levels of CRH. These data suggest that glucocorticoid oscillations result from a sub-hypothalamic pituitary-adrenal system, which functions as a deterministic peripheral hormone oscillator with a characteristic ultradian frequency. This constitutes a novel mechanism by which the level, rather than the pattern, of CRH determines the dynamics of glucocorticoid hormone secretion.  相似文献   

5.
The formation of somites in the course of vertebrate segmentation is governed by an oscillator known as the segmentation clock, which is characterized by a period ranging from 30 min to a few hours depending on the organism. This oscillator permits the synchronized activation of segmentation genes in successive cohorts of cells in the presomitic mesoderm in response to a periodic signal emitted by the segmentation clock, thereby defining the future segments. Recent microarray experiments [Dequeant, M.L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., Pourquie, O., 2006. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595-1598] indicate that the Notch, Wnt and Fibroblast Growth Factor (FGF) signaling pathways are involved in the mechanism of the segmentation clock. By means of computational modeling, we investigate the conditions in which sustained oscillations occur in these three signaling pathways. First we show that negative feedback mediated by the Lunatic Fringe protein on intracellular Notch activation can give rise to periodic behavior in the Notch pathway. We then show that negative feedback exerted by Axin2 on the degradation of β-catenin through formation of the Axin2 destruction complex can produce oscillations in the Wnt pathway. Likewise, negative feedback on FGF signaling mediated by the phosphatase product of the gene MKP3/Dusp6 can produce oscillatory gene expression in the FGF pathway. Coupling the Wnt, Notch and FGF oscillators through common intermediates can lead to synchronized oscillations in the three signaling pathways or to complex periodic behavior, depending on the relative periods of oscillations in the three pathways. The phase relationships between cycling genes in the three pathways depend on the nature of the coupling between the pathways and on their relative autonomous periods. The model provides a framework for analyzing the dynamics of the segmentation clock in terms of a network of oscillating modules involving the Wnt, Notch and FGF signaling pathways.  相似文献   

6.
Salari N  Büchel C  Rose M 《PloS one》2012,7(5):e38090
The state of a neural assembly preceding an incoming stimulus is assumed to modulate the processing of subsequently presented stimuli. The nature of this state can differ with respect to the frequency of ongoing oscillatory activity. Oscillatory brain activity of specific frequency range such as alpha (8-12 Hz) and gamma (above 30 Hz) band oscillations are hypothesized to play a functional role in cognitive processing. Therefore, a selective modulation of this prestimulus activity could clarify the functional role of these prestimulus fluctuations. For this purpose, we adopted a novel non-invasive brain-computer-interface (BCI) strategy to selectively increase alpha or gamma band activity in the occipital cortex combined with an adaptive presentation of visual stimuli within specific brain states. During training, oscillatory brain activity was estimated online and fed back to the participants to enable a deliberate modulation of alpha or gamma band oscillations. Results revealed that volunteers selectively increased alpha and gamma frequency oscillations with a high level of specificity regarding frequency range and localization. At testing, alpha or gamma band activity was classified online and at defined levels of activity, visual objects embedded in noise were presented instantly and had to be detected by the volunteer. In experiment I, the effect of two levels of prestimulus gamma band activity on visual processing was examined. During phases of increased gamma band activity significantly more visual objects were detected. In experiment II, the effect was compared against increased levels of alpha band activity. An improvement of visual processing was only observed for enhanced gamma band activity. Both experiments demonstrate the specific functional role of prestimulus gamma band oscillations for perceptual processing. We propose that the BCI method permits the selective modulation of oscillatory activity and the direct assessment of behavioral consequences to test for functional dissociations of different oscillatory brain states.  相似文献   

7.
Summary To investigate scene segmentation in the visual system we present a model of two reciprocally connected visual areas comprising spiking neurons. The peripheral area P is modeled similar to the primary visual cortex, while the central area C is modeled as an associative memory representing stimulus objects according to Hebbian learning. Without feedback from area C, spikes corresponding to stimulus representations in P are synchronized only locally (slow state). Feedback from C can induce fast oscillations and an increase of synchronization ranges (fast state). Presenting a superposition of several stimulus objects, scene segmentation happens on a time scale of hundreds of milliseconds by alternating epochs of the slow and fast state, where neurons representing the same object are simultaneously in the fast state. We relate our simulation results to various phenomena observed in neurophysiological experiments, such as stimulus-dependent synchronization of fast oscillations, synchronization on different time scales, ongoing activity, and attention-dependent neural activity.  相似文献   

8.
9.
The vertebrate segmentation clock was identified 10 years ago as a molecular oscillator associated with the rhythmic production of embryonic somites. Since then, three major signaling pathways--Notch, FGF, and Wnt--have been shown to be activated periodically during segmentation and proposed to constitute the clockwork of the system. However, recent results from zebrafish embryonic studies demonstrate that Notch signaling is involved in the coupling of oscillations among cells rather than in the pacemaker of the oscillator. Furthermore, genetic analyses in mouse indicate that Wnt and FGF play only a permissive role in the control of the oscillations. Therefore, the nature of the segmentation clock pacemaker still remains elusive.  相似文献   

10.
11.
We present an oscillator network model for the synchronization of oscillatory neuronal activity underlying visual processing. The single neuron is modeled by means of a limit cycle oscillator with an eigenfrequency corresponding to visual stimulation. The eigenfrequency may be time dependent. The mutual coupling strengths are unsymmetrical and activity dependent, and they scatter within the network. Synchronized clusters (groups) of neurons emerge in the network due to the visual stimulation. The different clusters correspond to different visual stimuli. There is no limitation of the number of stimuli. Distinct clusters do not perturb each other, although the coupling strength between all model neurons is of the same order of magnitude. Our analysis is not restricted to weak coupling strength. The scatter of the couplings causes shifts of the cluster frequencies. The model's behavior is compared with the experimental findings. The coupling mechanism is extended in order to model the influence of bicucullin upon the neural network. We additionally investigate repulsive couplings, which lead to constant phase differences between clusters of the same frequency. Finally, we consider the problem of selective attention from the viewpoint of our model.  相似文献   

12.
Inspired by the temporal correlation theory of brain functions, researchers have presented a number of neural oscillator networks to implement visual scene segmentation problems. Recently, it is shown that many biological neural networks are typical small-world networks. In this paper, we propose and investigate two small-world models derived from the well-known LEGION (locally excitatory and globally inhibitory oscillator network) model. To form a small-world network, we add a proper proportion of unidirectional shortcuts (random long-range connections) to the original LEGION model. With local connections and shortcuts, the neural oscillators can not only communicate with neighbors but also exchange phase information with remote partners. Model 1 introduces excitatory shortcuts to enhance the synchronization within an oscillator group representing the same object. Model 2 goes further to replace the global inhibitor with a sparse set of inhibitory shortcuts. Simulation results indicate that the proposed small-world models could achieve synchronization faster than the original LEGION model and are more likely to bind disconnected image regions belonging together. In addition, we argue that these two models are more biologically plausible.  相似文献   

13.
Cytosolic calcium oscillators   总被引:43,自引:0,他引:43  
M J Berridge  A Galione 《FASEB journal》1988,2(15):3074-3082
Many cells display oscillations in intracellular calcium resulting from the periodic release of calcium from intracellular reservoirs. Frequencies are varied, but most oscillations have periods ranging from 5 to 60 s. For any given cell, frequency can vary depending on external conditions, particularly the concentration of natural stimuli or calcium. This cytosolic calcium oscillator is particularly sensitive to those stimuli (neurotransmitters, hormones, growth factors) that hydrolyze phosphoinositides to give diacylglycerol and inositol 1,4,5-trisphosphate (Ins1,4,5P3). The ability of Ins1,4,5P3 to mobilize intracellular calcium is a significant feature of many of the proposed models that are used to explain oscillatory activity. Receptor-controlled oscillator models propose that there are complex feedback mechanisms that generate oscillations in the level of Ins1,4,5P3. Second messenger-controlled oscillator models demonstrate that the oscillator is a component of the calcium reservoir, which is induced to release calcium by a constant input of either Ins1,4,5P3 or calcium itself. In the latter case, the process of calcium-induced calcium release might be the basis of oscillatory activity in many cell types. The function of calcium oscillations is still unknown. Because oscillator frequency can vary with agonist concentration, calcium transients might be part of a frequency-encoded signaling system. When an external stimulus arrives at the cell surface the information is translated into a train of calcium spikes, i.e., the signal is digitized. Certain cells may then convey information by varying the frequency of this digital signal.  相似文献   

14.
Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1) stimulation enhanced the targeted oscillation power, (2) this enhancement outlasted stimulation, and (3) the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms.  相似文献   

15.
The eye changes gaze continuously from one visual stimulus to another. Using a high speed camera to record eye and lens movements we demonstrate how the crystalline lens sustains an inertial oscillatory decay movement immediately after every change of gaze. This behavior fit precisely with the movement of a classical damped harmonic oscillator. The time course of the oscillations range from 50 to 60 msec with an oscillation frequency of around 20 Hz. That has dramatic implications on the image quality at the retina on the very short times (∼50 msec) that follow the movement. However, it is well known that our vision is nearly suppressed on those periods (post-saccadic suppression). Both phenomenon follow similar time courses and therefore might be synchronized to avoid the visual impairment.  相似文献   

16.
The dynamic behavior of a model of two electrically coupled oscillatory neurons was studied while the external polarizing current was varied. It was found that the system with weak coupling can demonstrate one of five stable oscillatory modes: (1) in-phase oscillations with zero phase shift; (2) antiphase oscillations with halfperiod phase shift; (3) oscillations with any fixed phase shift depending on the value of the external polarizing current; (4) both in-phase and antiphase oscillations for the same current value, where the oscillation type depends on the initial conditions; (5) both in-phase and quasiperiodic oscillations for the same current value. All of these modes were robust, and they persisted despite small variations of the oscillator parameters. We assume that similar regimes, for example antiphase oscillations, can be detected in neurophysiological experiments. Possible applications to central pattern generator models are discussed.  相似文献   

17.
 Temporal correlation of neuronal activity has been suggested as a criterion for multiple object recognition. In this work, a two-dimensional network of simplified Wilson-Cowan oscillators is used to manage the binding and segmentation problem of a visual scene according to the connectedness Gestalt criterion. Binding is achieved via original coupling terms that link excitatory units to both excitatory and inhibitory units of adjacent neurons. These local coupling terms are time independent, i.e., they do not require Hebbian learning during the simulations. Segmentation is realized by a two-layer processing of the visual image. The first layer extracts all object contours from the image by means of “retinal cells” with an “on-center” receptive field. Information on contour is used to selectively inhibit Wilson-Cowan oscillators in the second layer, thus realizing a strong separation among neurons in different objects. Accidental synchronism between oscillations in different objects is prevented with the use of a global inhibitor, i.e., a global neuron that computes the overall activity in the Wilson-Cowan network and sends back an inhibitory signal. Simulations performed in a 50×50 neural grid with 21 different visual scenes (containing up to eight objects + background) with random initial conditions demonstrate that the network can correctly segment objects in almost 100% of cases using a single set of parameters, i.e., without the need to adjust parameters from one visual scene to the next. The network is robust with reference to dynamical noise superimposed on oscillatory neurons. Moreover, the network can segment both black objects on white background and vice versa and is able to deal with the problem of “fragmentation.” The main limitation of the network is its sensitivity to static noise superimposed on the objects. Overcoming this problem requires implementation of more robust mechanisms for contour enhancement in the first layer in agreement with mechanisms actually realized in the visual cortex. Received: 25 October 2001 / Accepted: 26 February 2003 / Published online: 20 May 2003 Correspondence to: Mauro Ursino (e-mail: mursino@deis.unibo.it, Tel.: +39-051-2093008, Fax: +39-051-2093073)  相似文献   

18.
Oscillatory synchrony could be used to establish dynamic links between the various cortical areas participating in the same cognitive process. Is it possible to detect oscillatory synchrony in humans, and is it relevant to behavior? There is now converging evidence for the existence of a transient oscillatory activity in the gamma range (30-60 Hz), obtained in response to static visual objects, and having only a loose temporal relationship to stimulus onset. This so-called "induced" gamma response is much larger in response to coherent static or moving objects. However, functional variations of gamma and/or beta (15-20 Hz) oscillations are not restricted to perceptive, bottom-up mechanisms, but are also observed during visual imagery or short-term memory maintenance. Oscillations at the scalp level thus seem to reflect large-scale neural cooperativity in a variety of task-dependent networks. Human intra-cranial recordings in a short-term memory paradigm further reveal the existence and the task-dependency of oscillatory synchrony in the beta range, between focal sites separated by several centimeters and with a few milliseconds time-lag. These findings thus confirm experimentally the hypothesis of a functional role of synchronized oscillatory activity in the coordination of distributed neural activity in humans, and support Hebb's concept of short-term memory maintenance by reentrant activity within the activated network. In addition, the intra-cranial data obtained in humans and monkeys also help to better understand the neural mechanisms generating scalp-recorded oscillations.  相似文献   

19.
 We present an oscillator network model for the synchronization of oscillatory neuronal activity underlying visual processing. The single neuron is modeled by means of a limit cycle oscillator with an eigenfrequency corresponding to visual stimulation. The eigenfrequency may be time dependent. The mutual coupling strengths are unsymmetrical and activity dependent, and they scatter within the network. Synchronized clusters (groups) of neurons emerge in the network due to the visual stimulation. The different clusters correspond to different visual stimuli. There is no limitation of the number of stimuli. Distinct clusters do not perturb each other, although the coupling strength between all model neurons is of the same order of magnitude. Our analysis is not restricted to weak coupling strength. The scatter of the couplings causes shifts of the cluster frequencies. The model’s behavior is compared with the experimental findings. The coupling mechanism is extended in order to model the influence of bicucullin upon the neural network. We additionally investigate repulsive couplings, which lead to constant phase differences between clusters of the same frequency. Finally, we consider the problem of selective attention from the viewpoint of our model. Received: 15 February 1995/Accepted in revised form: 18 July 1995  相似文献   

20.
动态神经网络中的同步振荡   总被引:3,自引:0,他引:3  
目前有一种假设认为同一视觉对象是由一群神经元的同步振荡活动来表征的。这一神经元发放活动的时间特性,是解决视觉信息处理中“结合问题(Bindingproblem)”的可能机制。本文用我们所提出的一种简化现实性神经网络模型[1]所构造的时滞非线性振子网络[2],模拟生物神经网络的同步振荡活动。并考虑了振子各参数的设置与振荡活动的关系,以及网络振子间耦联对同步活动的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号