首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

2.
Calyculin A and okadaic acid: inhibitors of protein phosphatase activity   总被引:44,自引:0,他引:44  
Calyculin A and okadaic acid induce contraction in smooth muscle fibers. Okadaic acid is an inhibitor of phosphatase activity and the aims of this study were to determine if calyculin A also inhibits phosphatase and to screen effects of both compounds on various phosphatases. Neither compound inhibited acid or alkaline phosphatases, nor the phosphotyrosine protein phosphatase. Both compounds were potent inhibitors of the catalytic subunit of type-2A phosphatase, with IC50 values of 0.5 to 1 nM. With the catalytic subunit of protein phosphatase type-1, calyculin A was a more effective inhibitor than okadaic acid, IC50 values for calyculin A were about 2 nM and for okadaic acid between 60 and 500 nM. The endogenous phosphatase of smooth muscle myosin B was inhibited by both compounds with IC50 values of 0.3 to 0.7 nM and 15 to 70 nM, for calyculin A and okadaic acid, respectively. The partially purified catalytic subunit from myosin B had IC50 values of 0.7 and 200 nM for calyculin A and okadaic acid, respectively. The pattern of inhibition for the phosphatase in myosin B therefore is similar to that of the type-1 enzyme.  相似文献   

3.
Extracts of Brassica napus (oilseed rape) seeds contain type 1 and type 2A protein phosphatases whose properties are indistinguishable from the corresponding enzymes in mammalian tissues. The type 1 activity dephosphorylated the beta-subunit of phosphorylase kinase selectively and was inhibited by the same concentrations of okadaic acid [IC50 (concentration causing 50% inhibition) approximately 10 nM], mammalian inhibitor 1 (IC50 = 0.6 nM) and mammalian inhibitor 2 (IC50 = 2.0 nM) as the rabbit muscle type 1 phosphatase. The plant type 2A activity dephosphorylated the alpha-subunit of phosphorylase kinase preferentially, was exquisitely sensitive to okadaic acid (IC50 approximately 0.1 nM), and was unaffected by inhibitors 1 and 2. As in mammalian tissues, a substantial proportion of plant type 1 phosphatase activity (40%) was particulate, whereas plant type 2A phosphatase was cytosolic. The specific activities of the plant type 1 and type 2A phosphatases were as high as in mammalian tissue extracts, but no type 2B or type 2C phosphatase activity was detected. The results demonstrate that the improved procedure for identifying and quantifying protein phosphatases in animal cells is applicable to higher plants, and suggests that okadaic acid may provide a new method for identifying plant enzymes that are regulated by reversible phosphorylation.  相似文献   

4.
A simple method for obtaining glycerinated muscle fibres of m. psoas of rabbit containing regulatory myosin light chains (LC2) of different levels of phosphorylation. The glycerination conditions stimulated endogenic kinase LC2 or phosphatase LC2. Glycerinated muscle fibres contained phosphorylated and dephosphorylated (levels of phosphorylation are 95 +/- 5%, and 5 +/- 5%, respectively) LC2 of myosin. To determine the level of phosphorylation the method of polyacrylamide gel electrophoresis in 8 M urea was modified.  相似文献   

5.
The inhibitory effect of a marine-sponge toxin, okadaic acid, was examined on type 1, type 2A, type 2B and type 2C protein phosphatases as well as on a polycation-modulated (PCM) phosphatase. Of the protein phosphatases examined, the catalytic subunit of type 2A phosphatase from rabbit skeletal muscle was most potently inhibited. For the phosphorylated myosin light-chain (PMLC) phosphatase activity of the enzyme, the concentration of okadaic acid required to obtain 50% inhibition (ID50) was about 1 nM. The PMLC phosphatase activities of type 1 and PCM phosphatase were also strongly inhibited (ID50 0.1-0.5 microM). The PMCL phosphatase activity of type 2B phosphatase (calcineurin) was inhibited to a lesser extent (ID50 4-5 microM). Similar results were obtained for the phosphorylase a phosphatase activity of type 1 and PCM phosphatases and for the p-nitrophenyl phosphate phosphatase activity of calcineurin. The following phosphatases were not affected by up to 10 microM-okadaic acid: type 2C phosphatase, phosphotyrosyl phosphatase, inositol 1,4,5-trisphosphate phosphatase, acid phosphatases and alkaline phosphatases. Thus okadaic acid had a relatively high specificity for type 2A, type 1 and PCM phosphatases. Kinetic studies showed that okadaic acid acts as a non-competitive or mixed inhibitor on the okadaic acid-sensitive enzymes.  相似文献   

6.
Agonist-induced activation of the RhoA/Rho kinase (ROCK) pathway results in inhibition of myosin phosphatase and maintenance of myosin light chain (MLC20) phosphorylation. We have shown that RhoA/ROCKII translocates and associates with heat shock protein (HSP)27 in the particulate fraction. We hypothesize that inhibition of the 130-kDa regulatory myosin-binding subunit (MYPT) requires its association with HSP27 in the particulate fraction. Furthermore, it is not certain whether regulation of MYPT by CPI-17 or by ROCKII is due to cross talk between RhoA and PKC-alpha. Presently, we examined the cross talk between RhoA and PKC-alpha in the regulation of MYPT phosphorylation in rabbit colon smooth muscle cells. Acetylcholine induced 1) sustained phosphorylation of PKC-alpha, CPI-17, and MYPT; 2) an increase in the association of phospho-MYPT with HSP27 in the particulate fraction; 3) a decrease in myosin phosphatase activity (66.21+/-3.52 and 42.19+/-3.85% nM/ml lysate at 30 s and 4 min); and 4) an increase in PKC activity (298.12+/-46.60% and 290.59+/-22.07% at 30 s and 4 min). Inhibition of RhoA/ROCKII by Y-27632 inhibited phosphorylation of MYPT and its association with HSP27. Both Y27632 and a negative dominant construct of RhoA inhibited phosphorylation of MYPT and CPI-17. Inhibition of PKCs or calphostin C or selective inhibition of PKC-alpha by negative dominant constructs inhibited phosphorylation of MYPT and CPI-17. The results suggest that 1) acetylcholine induces activation of both RhoA and/or PKC-alpha pathways, suggesting cross talk between RhoA and PKC-alpha resulting in phosphorylation of MYPT, inhibition of myosin phosphatase activity, and maintenance of MLC phosphorylation; and 2) phosphorylated MYPT is associated with HSP27 and translocated to the particulate fraction, suggesting a scaffolding role for HSP27 in mediating the association of the complex MYPT/RhoA-ROCKII. Thus both pathways (PKC and RhoA) converge on the regulation of myosin phosphatase activities and modulate sustained phosphorylation of MLC20.  相似文献   

7.
The catalytic subunits of bovine platelet protein phosphatases were separated into three distinct forms by chromatography on heparin-Sepharose. Each phosphatase was further purified to apparent homogeneity as judged in sodium dodecyl sulfate-polyacrylamide gel yielding single protein bands of 37, 41, and 36 kDa. The 37-kDa phosphatase was excluded from heparin-Sepharose and preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. It was stimulated by polycations (polybrene or histone H1) and was inhibited by okadaic acid (IC50 = 0.3 nM), but its activity was not influenced by inhibitor-2 or heparin. The 41-kDa phosphatase was eluted from heparin-Sepharose by 0.20-0.25 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was stimulated by polycations and inhibited by okadaic acid (IC50 = 2 nM), but its activity was not affected by inhibitor-2 or heparin. The 36-kDa phosphatase was eluted from heparin-Sepharose by 0.45-0.50 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was inhibited by inhibitor-2, heparin, histone H1, and okadaic acid (IC50 = 70 nM). The 37- and 36-kDa phosphatases can be classified as type-2A and type-1 enzymes, respectively. The 41-kDa phosphatase does not precisely fit the criteria of either type, showing only partial similarities to both type-1 and type-2A enzymes and it may represent a novel type of protein phosphatase in bovine platelets.  相似文献   

8.
The protein phosphatase inhibitor okadaic acid (> 100 nM) caused an abrupt and complete cessation of primary rat hepatocyte cell cycle progression at the restriction point in late G1. A decline in the G1/S transition rate was observed in response to elevated cAMP, excess selected nutrients, and okadaic acid (< 100 nM). Excess nutrients (40 mM glucose ± 5 mM dihydroxyacetone) acted by imposing an incomplete block in early G1. The cAMP action was potentiated by the phosphatase inhibitor microcystin, which in itself did not affect DNA replication. This suggests that cAMP acted by phosphorylating substrate(s) that is dephosphorylated by a microcystin-sensitive phosphatase. The additive effects of submaximal concentrations of okadaic acid and cAMP analogs indicated that okadaic acid and cAMP acted via different pathways. In conclusion, okadaic acid, cAMP, and excess nutrients, acting through distinct pathways, inhibited hepatocytes in different parts of the G1 phase. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Myosin light chain phosphatase associated with smooth muscle myosin (MAPP) was isolated from chicken gizzard. The MAPP was tightly associated with myosin and was not dissociated from myosin under the physiological ionic conditions. The phosphatase was dissociated from myosin in the presence of high MgCl2, i.e. 80 mM MgCl2. The binding site of the enzyme on the myosin molecule was the subfragment-2 region, since the enzyme did bind to the myosin rod and heavy meromyosin but not to the subfragment-1 affinity column. MAPP was purified with a heparin-Sepharose 6B column, and two activity peaks were obtained, i.e. MAPP I and MAPP II. The major activity peak, MAPP I, was further purified to homogeneity by thiophosphorylated myosin light chain-Sepharose 4B column chromatography. MAPP I was a tetramer composed of four 34-kDa subunits. The enzyme preferentially dephosphorylated the beta-subunit of phosphorylase kinase and was strongly inhibited by the heat- and acid-stable protein phosphatase inhibitor-1, whereas it was partially inhibited by the inhibitor-2. The IC50 (concentration of inhibitor giving 50% inhibition) value for the inhibition of the enzyme by okadaic acid was 70 nM which was about eight times higher than skeletal muscle type-1 and 390 times higher than type-2 protein phosphatase. These results demonstrate that the MAPP I is a type-1-like protein phosphatase, although the properties are not the same as type-I phosphatase. The properties of the myosin-associated phosphatase were distinct from the phosphatases reported previously, although some properties were similar to smooth muscle phosphatase-IV. Therefore, it is concluded that MAPP I is a novel smooth muscle protein phosphatase. Since it strongly associated with smooth muscle myosin, it is likely that MAPP I is responsible for the dephosphorylation of smooth muscle myosin in situ.  相似文献   

10.
We investigated whether myosin light chain phosphatase activity changes during nitric oxide-induced relaxation of contracted intact carotid media and how changes in phosphatase activity mediate this relaxation. We also investigated one mechanism for regulating this phosphatase. Myosin phosphatase activity, myosin light chain phosphorylation, guanosine 3',5'-cyclic monophosphate (cGMP) concentration, and phosphorylation of the inhibitory protein CPI-17 were all assayed in homogenates of one carotid media ring at each time point during nitric oxide-induced relaxation. The application of sodium nitroprusside to histamine-contracted media caused rapid declines in light chain phosphorylation and force. These were temporally correlated with a rapid elevation of cGMP and a large transient increase in myosin phosphatase activity. During the early response to nitroprusside, when force declined, increases in myosin phosphatase activity, concurrent with cGMP-mediated decreases in calcium and myosin light chain kinase activity, could accelerate light chain dephosphorylation. CPI-17 was dephosphorylated upon application of nitroprusside at the same time that myosin phosphatase activity increased, suggesting that the removal of inhibition by phospho-CPI-17 contributed to the increase in myosin phosphatase activity. After 20 min of nitroprusside, myosin phosphatase activity had declined to basal levels, however low force was sustained. Additional light chain phosphorylation-independent mechanisms may be involved in sustaining the relaxation.  相似文献   

11.
It was determined that the myosin phosphatase (MP) activity and content of myosin phosphatase target subunit 1 (MYPT1) were correlated in subcellular fractions of human hepatocarcinoma (HepG2) cells. In control cells MYPT1 was localized in the cytoplasm and in the nucleus, as determined by confocal microscopy. Treatment of HepG2 cells with 50 nM okadaic acid (OA), a cell-permeable phosphatase inhibitor, induced several changes: 1) a marked redistribution of MYPT1 to the plasma membrane associated with an increased level of phosphorylation of MYPT1 at Thr695. Both effects showed only a slight influence with the Rho-kinase inhibitor, Y-27632; 2) an increase in phosphorylation of MYPT1 at Thr850 associated with its accumulation in the perinuclear region and nucleus. These effects were markedly reduced by Y-27632; 3) an increased phosphorylation of the 20 kDa myosin II light chain at Ser19 associated with an increased location of myosin II at the cell center. These effects were partially counteracted by Y-27632; 4) an increase in stress fiber formation and a decrease in cell migration, both OA-induced effects were blocked by Y-27632. In HepG2 lysates, OA (5-100 nM) did not affect MP activity but inhibited PP2A activity. These results indicate that OA induces differential phosphorylation and translocation of MYPT1, dependent on PP2A and, to varying extents, on ROK. These changes are associated with an increased level of myosin II phosphorylation and attenuation of hepatic cell migration.  相似文献   

12.
The protein B-50 is dephosphorylated in rat cortical synaptic plasma membranes (SPM) by protein phosphatase type 1 and 2A (PP-1 and PP-2A)-like activities. The present studies further demonstrate that B-50 is dephosphorylated not only by a spontaneously active PP-1-like enzyme, but also by a latent form after pretreatment of SPM with 0.2 mM cobalt/20 micrograms of trypsin/ml. The activity revealed by cobalt/trypsin was inhibited by inhibitor-2 and by high concentrations (microM) of okadaic acid, identifying it as a latent form of PP-1. In the presence of inhibitor-2 to block PP-1, histone H1 (16-64 micrograms/ml) and spermine (2 mM) increased B-50 dephosphorylation. This sensitivity to polycations and the reversal of their effects on B-50 dephosphorylation by 2 nM okadaic acid are indicative of PP-2A-like activity. PP-1- and PP-2A-like activities from SPM were further displayed by using exogenous phosphorylase alpha and histone H1 as substrates. Both PP-1 and PP-2A in rat SPM were immunologically identified with monospecific antibodies against the C-termini of catalytic subunits of rabbit skeletal muscle PP-1 and PP-2A. Okadaic acid-induced alteration of B-50 phosphorylation, consistent with inhibition of protein phosphatase activity, was demonstrated in rat cortical synaptosomes after immunoprecipitation with affinity-purified anti-B-50 immunoglobulin G. These results provide further evidence that SPM-bound PP-1 and PP-2A-like enzymes that share considerable similarities with their cytosolic counterparts may act as physiologically important phosphatases for B-50.  相似文献   

13.
14.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

15.
We hypothesized that increased myofibrillar type 1 protein phosphatase (PP1) catalytic activity contributes to impaired aortic smooth muscle contraction after hypoxia. Our results show that inhibition of PP1 activity with microcystin-LR (50 nmol/l) or okadaic acid (100 nmol/l) increased phenylephrine- and KCl-induced contraction to a greater extent in aortic rings from rats exposed to hypoxia (10% O(2)) for 48 h than in rings from normoxic animals. PP1 inhibition also restored the level of phosphorylation of the 20-kDa myosin light chain (LC(20)) during maximal phenylephrine-induced contraction to that observed in the normoxic control group. Myofibrillar PP1 activity was greater in aortas from rats exposed to hypoxia than in normoxic rats (P < 0.05). Levels of the protein myosin phosphatase-targeting subunit 1 (MYPT1) that mediates myofibrillar localization of PP1 activity were increased in aortas from hypoxic rats (193 +/- 28% of the normoxic control value, P < 0.05) and in human aortic smooth muscle cells after hypoxic (1% O(2)) incubation (182 +/- 18% of the normoxic control value, P < 0.05). Aortic levels of myosin light chain kinase were similar in normoxic and hypoxic groups. In conclusion, after hypoxia, increased MYPT1 protein and myofibrillar PP1 activity impair aortic vasoreactivity through enhanced dephosphorylation of LC(20).  相似文献   

16.
S Klumpp  J E Schultz 《FEBS letters》1991,288(1-2):60-64
Okadaic acid, a specific inhibitor of protein phosphatase 1 in Paramecium causes sustained backward swimming in response to depolarising stimuli (S. Klumpp et al. (1990) EMBO J. 9, 685). Here, we employ okadaic acid, tautomycin, microcystin LR and inhibitor 1 as phosphatase inhibitors to identify a 42 kDa protein in the excitable ciliary membrane that is dephosphorylated by protein phosphatase 1. Identification of the 42 kDa protein was facilitated by the finding that the protein kinase responsible for its phosphorylation uses Ca-ATP as a substrate just as effectively as Mg-ATP. Notably, dephosphorylation of the 42 kDa protein is specifically inhibited by cyclic AMP; cyclic GMP has no effect.  相似文献   

17.
18.
Double-stranded RNA-dependent protein kinase (PKR) is a participant in the cellular antiviral response and phosphorylates the alpha-subunit of eukaryotic translation initiation factor 2alpha (eIF-2alpha) to block protein synthesis. Treatment of human osteosarcoma cell line MG63 cells with a serine and threonine protein phosphatase inhibitor, okadaic acid, at the concentration of 100 nM, but not at 20 nM, induced apoptosis. To investigate the functional relationship between phosphatases and apoptosis, we examined the phosphorylation levels of PKR and eIF-2alpha by Western blot analysis. During treatment of cells with it at the higher concentration (100 nM), okadaic acid increased the level of phosphorylated PKR in MG63 cells, this kinase phosphorylating eIF-2alpha. However, at the lower concentration (20 nM), okadaic acid did not affect the level of phosphorylated PKR. In the cells treated with 100 nM okadaic acid, activation of NF-kappaB also occurred. Even though inhibition of translation occurred simultaneously in MG63 cells, the expression of pro-apoptotic proteins Fas and Bax was not affected by 100 nM okadaic acid in these cells. We concluded that the inhibition of translation decreased anti-apoptotic protein expression, thus resulting in apoptosis. Our results also suggest that the inhibition of the protein phosphatase activity by okadaic acid induced apoptosis in MG63 cells through PKR and eIF-2alpha.  相似文献   

19.
Okadaic acid, a selective inhibitor of serine/threonine protein phosphatases, was utilized to investigate the requirement for phosphatases in cell cycle progression of GH4 rat pituitary cells. Okadaic acid inhibited GH4 cell proliferation in a concentration-dependent manner with a half-maximal inhibition (IC50) of approximately 5 nM. Treatment of GH4 cells with 10 nM okadaic acid resulted in a 40-60% decrease in phosphatase activity and an increase in the proportion of phosphorylated retinoblastoma (RB) protein. Cell cycle analysis indicated that okadaic acid increased the percentage of cells in G2-M, decreased proportionally the percentage of cells in G1 phase, and had little effect on the percentage of cells in S-phase. The absence of a change in the proportion of S-phase cells indicates that G1-specific phosphatases responsible for dephosphorylation of RB protein were not inhibited by 10 mM okadaic acid. Mitotic index revealed that 10 nM okadaic acid decreased proliferation of GH4 cells specifically by slowing the progression through mitosis. Immunostaining with anti-tubulin demonstrated that 10 nM okadaic acid-treated mitotic cells contained mitotic spindles; however, the spindle apparatus in these cells frequently contained multiple poles. These results suggest that the organization of spindle microtubules during prometaphase requires a protein phosphatase that is sensitive to nanomolar concentrations of okadaic acid. Chromosomes in 10 nM okadaic acid-treated cells appear to be attached to spindle microtubules and the nuclear envelope is absent. The effects of okadaic acid on the spindle differ from those elicited by the calcium channel blocker, nimodipine, indicating that this okadaic acid sensitive phosphatase is not part of the calcium signalling events which participate in mitotic progression.  相似文献   

20.
The regulation of carbohydrate metabolism involves changes in the phosphorylation state of enzymes. We used okadaic acid, a potent inhibitor of protein phosphatases type 2A (IC50 0.05-2 nM) and type 1 (IC50 10-20 nM) to determine the role of these phosphatases in the control of carbohydrate metabolism by insulin in rat hepatocytes. In the absence of insulin, okadaic acid caused total inhibition of glycogen synthesis at 100 nM and half-maximal inhibition at 8-9 nM. In the presence of insulin, lower concentrations of okadaic acid (to which type 2A phosphatases are sensitive) were effective at inhibiting glycogen synthesis. 2.5 nM okadaic acid caused total inhibition of the 2-fold stimulation of glycogen synthesis by insulin but had no effect on the basal unstimulated rate of glycogen synthesis. This suggests the involvement of type 2A protein phosphatases in the stimulation of glycogen synthesis by insulin. Okadaic acid (5 nM), partially suppressed but did not abolish the increase in glucokinase mRNA levels caused by insulin, indicating that dephosphorylation mechanisms may be involved in the control of glucokinase mRNA levels by insulin. It is concluded that activation of protein phosphatases type 1 and/or type 2A by insulin may have a widespread role in the control of glucose metabolism at various sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号