首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino groups of insulin have been studied by 1H and 13C nuclear magnetic resonance spectroscopy in insulin, zinc-free insulin and methylated insulin. By difference spectroscopy it is possible to follow the shift with pH of the epsilon-CH2 and delta-CH2 proton resonances of lysine-B29 in insulin. In methylated insulin the dimethyl proton resonances of glycine-A1, phenylalanine-B1 and lysine-B29 can be followed as a function of pH. In native insulin pKapp values of 6.7 and 8.0 are obtained for phenylalanine-B1 and glycine-A1 (the assignment is tentative) and 11.2 for lysine-B29. Separate resonances have been observed from the lysine-B29 Nepsilon-(CH3)2 group for the monomeric and dimeric forms of methylated insulin, which indicates a small change in the environment of lysine-B29 on dimerisation. The nuclear magnetic resonance spectral characteristics of these groups are, in general, consistent with the overall structure of the crystal form of the 2-zinc insulin hexamer.  相似文献   

2.
The interaction between monomeric insulin and monosaccharides has been investigated through circular dichroism, fluorescence spectroscopy and two dimensional nuclear magnetic resonance. CD spectra indicate that D-glucose interacts with monomeric insulin whereas D-galactose, D-mannose and 2-deoxy-D-glucose have a lower effect. Fluorescence emission was quenched at sugar concentrations of 5-10 mM. Titration with the different sugars produces a quenching of the tyrosine spectrum from which a binding free energy value for the insulin-sugar complexes has been evaluated. Transfer nuclear Overhauser enhancement NMR experiments indicate the existence of dipolar interactions at short interatomic distances between C-1 proton of D-glucose in the beta form and the monomeric insulin. Further, NMR total correlation spectra experiments revealed that the hormone is in the monomeric form and that upon addition of glucose no aggregation occurs. The interaction does not involve relevant changes in the secondary structure of insulin suggesting that the interaction occur at the side chain level. Molecular dynamics simulations and modeling studies, based on the dynamic fluctuations of potential binding moiety sidechains, argued from results of NMR spectroscopy, provide additional informations to locate the putative binding sites of D-glucose to insulin.  相似文献   

3.
Insulin has proved difficult to study by nuclear magnetic resonance spectroscopy because of its complex aggregation behaviour in solution and its insolubility between pH 4 and 7. Now for the first time it has been possible to assign the 1H nuclear magnetic resonances of the H-2 histidine protons of residues B5 and B10 of bovine 2 Zn insulin and Zn-free insulin, and the B5 and A8 residues of hagfish insulin. As expected, the addition of Zn to Zn-free insulin causes virtually no change in the chemical shift or the rate of H-D exchange of the H-2 proton of histidine B5, which is not involved in Zn binding in the 2 Zn insulin hexamer. The rate of H-D exchange of the H-2 proton of histidine B10 is decreased markedly on Zn binding at this residue, but the chemical shift of the resonance remains virtually constant owing to the balancing of an upfield ring current shift of the ordered histidine residues by a downfield shift due to electron withdrawal from the ring nitrogen by the Zn binding.  相似文献   

4.
The terminal regions of Salmonella flagellin are essential for polymerization to form the flagellar filament. It has recently been suggested, on the basis of results from circular dichroism spectroscopy and scanning calorimetry, that these regions are disordered in solution. We report here direct evidence for disorder and mobility in the terminal regions of flagellin using 400 MHz proton nuclear magnetic resonance (n.m.r.) spectroscopy. Comparison of the n.m.r. spectra of monomeric and polymeric flagellin shows that the terminal regions become organized when polymerized to form the filament.  相似文献   

5.
Proton nuclear magnetic resonance spectroscopy has been used to detect two water molecules bound to residues in the active site of the Lactobacillus casei dihydrofolate reductase (DHFR). Their presence was detected by measuring nuclear Overhauser effects between NH protons in protein residues and protons in the individual bound water molecules in two-dimensional nuclear Overhauser effect spectroscopy (NOESY), in nuclear Overhauser effect spectroscopy in the rotating frame (ROESY) and three-dimensional 1H-15N ROESY-heteronuclear multiple quantum coherence spectra recorded on samples containing appropriately 15N-labelled DHFR. For the DHFR-methotrexate-NADPH complex, two bound molecules were found, one close to the Trp5 amide NH proton and the other near to the Trp21 indole HE1 proton: these correspond to two of the water molecules (Wat201 and Wat253) detected in the crystal structure studies described by Bolin and co-workers. However, the nuclear magnetic resonance experiments did not detect any of the other bound water molecules observed in the X-ray studies. The nuclear magnetic resonance results indicate that the two bound water molecules that were detected have lifetimes in the solution state that are longer than approximately two nanoseconds. This is of considerable interest, since one of these water molecules (Wat253) has been implicated as the likely proton donor in the catalytic reduction of dihydrofolate to tetrahydrofolate.  相似文献   

6.
A 1H nuclear magnetic resonance study of Sepia melanin, Sepia melanin free acid (Sepia MFA) and human hair melanin was carried out in deuterium oxide solution at pH 10-11. The empirical formula of Sepia MFA was calculated and used to estimate the number of protons in the aromatic region of the Sepia MFA polymeric chain and to suggest a possible monomeric unit profile.  相似文献   

7.
Human beta-defensin-2 (HBD-2) is a member of the defensin family of antimicrobial peptides. HBD-2 was first isolated from inflamed skin where it is posited to participate in the killing of invasive bacteria and in the recruitment of cells of the adaptive immune response. Static light scattering and two-dimensional proton nuclear magnetic resonance spectroscopy have been used to assess the physical state and structure of HBD-2 in solution. At concentrations of < or = 2.4 mM, HBD-2 is monomeric. The structure is amphiphilic with a nonuniform surface distribution of positive charge and contains several key structural elements, including a triple-stranded, antiparallel beta-sheet with strands 2 and 3 in a beta-hairpin conformation. A beta-bulge in the second strand occurs at Gly28, a position conserved in the entire defensin family. In solution, HBD-2 exhibits an alpha-helical segment near the N-terminus that has not been previously ascribed to solution structures of alpha-defensins or to the beta-defensin BNBD-12. This novel structural element may be a factor contributing to the specific microbicidal or chemokine-like properties of HBD-2.  相似文献   

8.
The solution structure of the B9(Asp) mutant of human insulin has been determined by two-dimensional 1H nuclear magnetic resonance spectroscopy. Thirty structures were calculated by distance geometry from 451 interproton distance restraints based on intra-residue, sequential and long-range nuclear Overhauser enhancement data, 17 restraints on phi torsional angles obtained from 3JH alpha HN coupling constants, and the restraints from 17 hydrogen bonds, and the three disulphide bridges. The distance geometry structures were optimized using restrained molecular dynamics (RMD) and energy minimization. The average root-mean-square deviation for the best 20 RMD refined structures is 2.26 A for the backbone and 3.14 A for all atoms if the less well-defined N and C-terminal residues are excluded. The helical regions are better defined, with root-mean-square deviation values of 1.11 A for the backbone and 2.03 A for all atoms. The data analysis and the calculations show that B9(Asp) insulin, in water solution at the applied pH (1.8 to 1.9), is a well-defined dimer with no detectable difference between the two monomers. The association of the two monomers in the solution dimer is relatively loose as compared with the crystal dimer. The overall secondary and tertiary structures of the monomers in the 2Zn crystal hexamer is found to be preserved. The conformation-averaged NMR structures obtained for the monomer is close to the structure of molecule 1 in the hexamer of the 2Zn insulin crystal. However, minor, but significant deviations from this structure, as well as from the structure of monomeric insulin in solution, exist and are ascribed to the absence of the hexamer and crystal packing forces, and to the presence of monomer-monomer interactions, respectively. Thus, the monomer in the solution dimer shows a conformation similar to that of the crystal monomer in molecular regions close to the monomer-monomer interface, whereas it assumes a conformation similar to that of the solution structure of monomeric insulin in other regions, suggesting that B9(Asp) insulin adopts a monomer-like conformation when this is not inconsistent with the monomer-monomer arrangement in the dimer.  相似文献   

9.
The first high resolution proton nuclear magnetic resonance spectra are reported for the native ferric and ferric cyano complexes of bovine lactoperoxidase. The spectrum of the native species exhibits broad heme signals in a far downfield region characteristic of the high-spin ferric state. The low-spin cyano complex yields a proton nuclear magnetic resonance spectrum with signals as far as 68.5 ppm downfield and as far as -28 ppm upfield of the tetramethylsilane reference. These peak positions are anomalous with respect to those seen only as far as 35 ppm downfield in other cyano hemoprotein complexes. An extreme asymmetry in the unpaired spin delocalization pattern of the iron porphyrin is suggested. The unusual proton nuclear magnetic resonance properties parallel distinctive optical spectral properties and the exceptional resistance to heme displacement from the enzyme. Lactoperoxidase utilized in these studies was isolated from raw milk and purified by an improved, rapid chromatographic procedure.  相似文献   

10.
Several conformations generated from approximate potential energy calculations are presented for the bicyclic heptapeptide phalloidin which are consistent with the conformation-dependent information obtained from proton nuclear magnetic resonance measurements performed on phalloidin in dimethylsulfoxide solution. In each conformation, the cysteine amide proton is intramolecularly hydrogen bonded, the tryptophan amide is internally buried and the methyl group of the alanine residue preceding tryptophan is shielded by the tryptophan ring. Thus, phalloidin appears to be a relatively rigid molecule in solution.  相似文献   

11.
The self-association of puromycin has been studied using proton magnetic resonance spectroscopy. The concentration, temperature and pH dependence studies of the proton chemical shifts of the adenine protons indicate that puromycin in aqueous solution at pD 7.4 self associates predominantly through adenine-adenine interaction. At this pD, the amino group of the aminoacyl segment of puromycin has been demonstrated to exist in a equilibrium blend of protonated and non-protonated forms. At pD 2.6, PM is found to exist predominantly in the monomeric from in which the methyl groups of the 6N-dimethyladenine are found to be non-equivalent due to hindered rotation about the C6-N6 bond.  相似文献   

12.
Abstract

The self-association of puromycin has been studied using proton magnetic resonance spectroscopy. The concentration, temperature and pH dependence studies of the proton chemical shifts of the adenine protons indicate that puromycin in aqueous solution at pD 7.4 self associates predominantly through adenine-adenine interaction. At this pD, the amino group of the aminoacyl segment of puromycin has been demonstrated to exist in a equilibrium blend of protonated and non-protonated forms. At pD 2.6, PM is found to exist predominantly in the monomeric from in which the methyl groups of the 6N-dimethyladenine are found to be non-equivalent due to hindered rotation about the C6-N6 bond.  相似文献   

13.
Complete resonance assignments of the proton NMR spectrum of gonadoliberin (in its native amide and free acid forms) have been obtained using two-dimensional nuclear magnetic resonance spectroscopy under three different environmental conditions, namely, dimethyl sulphoxide solution, aqueous solution and lipid-bound form in model membranes. The proton chemical shifts in the three cases have been compared to derive information about inherent conformational characteristics of the molecule. It has been inferred that the molecule possesses no short-range or long-range order under any of the three solvent conditions. However, there is a nonspecific increase in the linewidths when gonadoliberin is bound to model membranes, indicating a reduced internal motion in the molecule due to lipid-peptide interactions.  相似文献   

14.
Three of the four paramagnetically shifted heme methyl nuclear magnetic resonance peaks of cyanometmyoglobin could be assigned by comparing the proton nuclear magnetic resonance spectra of myoglobins reconstituted from selectively deuterated hemes. These spectra indicate that the fourth methyl nuclear magnetic resonance peak has to be looked for outside the region ?9 to ?43 parts per million.  相似文献   

15.
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2.  相似文献   

16.
The solution structure of human insulin-like growth factor 1 has been investigated with a combination of nuclear magnetic resonance and restrained molecular dynamics methods. The results show that the solution structure is similar to that of insulin, but minor differences exist. The regions homologous to insulin are well-defined, while the remainder of the molecule exhibits greater disorder. The resultant structures have been used to visualize the sites for interaction with a number of physiologically important proteins.  相似文献   

17.
M G Zagorski  C J Barrow 《Biochemistry》1992,31(24):5621-5631
Beta-peptide is a major component of amyloid deposits in Alzheimer's disease. We report here a proton nuclear magnetic resonance (NMR) spectroscopic investigation of a synthetic peptide that is homologous to residues 1-28 of beta-peptide [abbreviated as beta-(1-28)]. The beta-(1-28) peptide produces insoluble beta-pleated sheet structures in vitro, similar to the beta-pleated sheet structures of beta-peptide in amyloid deposits in vivo. For peptide solutions in the millimolar range, in aqueous solution at pH 1-4 the beta-(1-28) peptide adopts a monomeric random coil structure, and at pH 4-7 the peptide rapidly precipitates from solution as an oligomeric beta-sheet structure, analogous to amyloid deposition in vivo. The NMR work shown here demonstrates that the beta-(1-28) peptide can adopt a monomeric alpha-helical conformation in aqueous trifluoroethanol solution at pH 1-4. Assignment of the complete proton NMR spectrum and the determination of the secondary structure were arrived at from interpretation of two-dimensional (2D) NMR data, primarily (1) nuclear Overhauser enhancement (NOE), (2) vicinal coupling constants between the amide (NH) and alpha H protons, and (3) temperature coefficients of the NH chemical shifts. The results show that at pH 1.0 and 10 degrees C the beta-(1-28) peptide adopts an alpha-helical structure that spans the entire primary sequence. With increasing temperature and pH, the alpha-helix unfolds to produce two alpha-helical segments from Ala2 to Asp7 and Tyr10 to Asn27. Further increases in temperature to 35 degrees C cause the Ala2-Asp7 section to become random coil, while the His13-Phe20 section stays alpha-helical. A mechanism involving unfavorable interactions between charged groups and the alpha-helix macrodipole is proposed for the alpha-helix----beta-sheet conversion observed at midrange pH.  相似文献   

18.
L J Rinkel  I Tinoco  Jr 《Nucleic acids research》1991,19(13):3695-3700
One- and two-dimensional nuclear magnetic resonance (NMR) experiments were used to study the conformation of the DNA hexadecanucleotide d(CACGTGTGTGCGTGCA) in aqueous solution. NMR spectra were recorded for the compound in D2O and in H2O/D2O (90/10) over the temperature range 1 degree C-60 degrees C. Assignments of imino proton resonances and of non-exchangeable proton resonances (except for some H4', H5' and H5" resonances) are given. The 1H-NMR spectra indicate that below about 20 degrees C, the compound exists as a single monomolecular species. Between 20 degrees C and 55 degrees C the oligonucleotide occurs as a mixture of structures in fast exchange on the NMR time scale, except for the temperature region 30 degrees - 34 degrees C, where substantial line broadening indicates intermediate exchange; above 60 degrees C the single strand predominates. The imino proton spectra, chemical shift values, and scalar coupling and NOE data reveal that the monomeric form, which is exclusively present below 20 degrees C, consists of a structure with a B-DNA double helix region of six base pairs, both ends of which are closed by hairpin loops of only two nucleotides, giving the molecule a dumbbell-like structure: [sequence: see text].  相似文献   

19.
The first application of phosphorous 31 (31P) and proton (1H) nuclear magnetic resonance (NMR) spectroscopy to the analysis of the metabolic profiles of skin flaps in a rat model and of human skin grafts is presented. Resonances of adenosine triphosphate (ATP), phosphocreatine (PCr), and inorganic phosphate (Pi) were identified in 31P nuclear magnetic resonance spectra. Resonances of phosphocreatine, creatine (Cr), and lactate (Lac) were identified in 1H nuclear magnetic resonance spectra. The most significant finding was the substantial presence of phosphocreatine as the major high-energy phosphometabolite in mammalian skin, a finding which heretofore has not been widely recognized. An energy shuttle between phosphocreatine and ATP is operative in skin to buffer the fall in ATP during ischemic (anaerobic) insult. Inability to replenish exhausted phosphocreatine reserves predictively correlates with eventual flap necrosis. We have defined and analyzed temporal fluxes in the phosphocreatine-creatine and phosphocreatine plus creatine-lactate ratios by proton nuclear magnetic resonance. Both are sensitive, accurate, and unambiguous early prognostic indices of eventual flap outcome. These findings support the concept that the fate of a flap may be established as early as 3 hours after elevation and have laid the groundwork for development and application of noninvasive in vivo nuclear magnetic resonance spectroscopy to the study of skin flaps in animals and humans.  相似文献   

20.
High-resolution phase-sensitive two-dimensional proton nuclear magnetic resonance was used to monitor the preparation by high-performance liquid chromatography of homogeneous proteins from the venom of Naja mossambica mossambica. This resulted in the characterization of a heterogeneous protein preparation VII2, which had been used in earlier structural studies by NMR, as well as a homogeneous protein CTXIIb and a nearly homogeneous protein fraction CTXIIa, which are now both subject to further investigations of their solution conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号