首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
EmTFP250 is a high molecular mass, asexual stage antigen from Eimeria maxima strongly associated with maternally derived immunity to this protozoan parasite in hatchling chickens. Cloning and sequence analysis has predicted the antigen to be a novel member of the thrombospondin-related anonymous protein (TRAP) family of apicomplexan parasites. Members of the TRAP family are microneme proteins and are associated with host cell invasion and apicomplexan gliding motility. In order to assess the immunogenicity of EmTFP250, a C-terminal derivative encoding a low complex, hydrophilic region and putative transmembrane domain/cytosolic tail was expressed in a bacterial host system. The recombinant protein was used to immunise mice and chickens and found to induce strong IgG responses in both animal models as determined by specific ELISAs. Using Western blotting, protective maternal IgG antibodies previously shown to recognise native EmTFP250 recognised the recombinant protein and, in addition, antibodies raised against the recombinant protein were shown to recognise native EmTFP250. Localisation studies employing immuno-light microscopy and immuno-electron microscopy showed that antibodies to the recombinant protein specifically labeled micronemes within merozoites of E. maxima. Furthermore, antibodies to the recombinant EmTFP250 derivative showed similar labeling of micronemes within merozoites of Eimeria tenella. This study is further suggestive of a functional importance for EmTFP250 and underscores its potential as a candidate for a recombinant vaccine targeting coccidiosis in chickens.  相似文献   

2.
Apicomplexan parasites such as Eimeria maxima possess a resilient oocyst wall that protects them upon excretion in host faeces and in the outside world, allowing them to survive between hosts. The wall is formed from the contents of specialised organelles – wall-forming bodies – found in macrogametes of the parasites. The presence of dityrosine in the oocyst wall suggests that peroxidase-catalysed dityrosine cross-linking of tyrosine-rich proteins from wall-forming bodies forms a matrix that is a crucial component of oocyst walls. Bioinformatic analyses showed that one of these tyrosine-rich proteins, EmGAM56, is an intrinsically unstructured protein, dominated by random coil (52–70%), with some α-helix (28–43%) but a relatively low percentage of β-sheet (1–11%); this was confirmed by nuclear magnetic resonance and circular dichroism. Furthermore, the structural integrity of EmGAM56 under extreme temperatures and pH indicated its disordered nature. The intrinsic lack of structure in EmGAM56 could facilitate its incorporation into the oocyst wall in two ways: first, intrinsically unstructured proteins are highly susceptible to proteolysis, explaining the several differently-sized oocyst wall proteins derived from EmGAM56; and, second, its flexibility could facilitate cross-linking between these tyrosine-rich derivatives. An in vitro cross-linking assay was developed using a recombinant 42 kDa truncation of EmGAM56. Peroxides, in combination with plant or fungal peroxidases, catalysed the rapid formation of dityrosine cross-linked polymers of the truncated EmGAM56, as determined by western blotting and HPLC, confirming this protein’s propensity to form dityrosine bonds.  相似文献   

3.
Two immunodominant gametocyte antigens from Eimeria maxima with M(r) 56 kDa and M(r) 82 kDa have been identified previously as potential candidates for inclusion in a recombinant subunit vaccine against coccidiosis in poultry. Here, these proteins have been biochemically characterised, immunolocalised within the parasite, and sequences for their amino termini determined. These antigens co-purify by affinity chromatography suggesting an interaction with each other. However, separation of the proteins by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of beta-mercaptoethanol did not reveal the presence of inter-chain disulphide bonds. The true masses of the 56 and 82 kDa antigens are 52450 and 62450 Da, respectively, as determined by mass spectrometry. TX-114 separations suggested that they exist, in part, as soluble proteins within the parasite, and immunolocalisation studies indicated that they were found in the wall forming bodies of macrogametocytes. Separation of the proteins by 2D SDS-PAGE revealed that they are acidic in nature and heterogeneous in charge. Cleavage by neuraminidase and O-glycosidase indicated that the presence of O-linked glycans contributed to some of the charge microheterogeneity of both proteins. The absence of these O-glycans however, did not abolish antibody recognition, suggesting that the development of a recombinant subunit vaccine is possible. A more extensive investigation of the carbohydrate moieties of these proteins revealed that they also possess glucose, fucose, mannose and galactose. There was no evidence for the presence of N-linked glycans. The 56 and 82 kDa antigens were separated from a mixture of proteins in a crude gametocyte lysate by 2D SDS-PAGE, the proteins isolated, and the N-terminus amino acid sequence determined. They showed no homology to each other at the N-terminus, or to any other previously characterised protein. Characterisation of these novel proteins has provided further insights into the molecular mechanisms of gametocyte differentiation in E. maxima.  相似文献   

4.
5.
Differential bacterial counts were made on the intestinal and caecal contents of chickens after inoculation with a standard dose of 320 000 freshly sporulated oocysts of Eimeria brunetti.  相似文献   

6.
We have identified, and followed the development of three macrogamete organelles involved in the formation of the oocyst wall of Eimeria maxima. The first were small lucent vacuoles that cross-reacted with antibodies to the apple domains of the Toxoplasma gondii microneme protein 4. They appeared early in development and were secreted during macrogamete maturation to form an outer veil and were termed veil forming bodies. The second were the wall forming bodies type 1, large, electron dense vacuoles that stained positively only with antibodies raised to an enriched preparation of the native forms of 56 (gam56), 82 (gam82) and 230 kDa (gam230) gametocyte antigens (termed anti-APGA). The third were the wall forming bodies type 2, which appeared before the wall forming bodies type 1 but remain enclosed within the rough endoplasmic reticulum and stained positively with antibodies raised to recombinant versions of gam56 (anti-gam56), gam82 (anti-gam82) and gam230 (anti-gam230) plus anti-APGA. At the initiation of oocyst wall formation, the anti-T. gondii microneme protein 4 positive outer veil detached from the surface. The outer layer of the oocyst wall was formed by the release of the contents of wall forming bodies type 1 at the surface to form an electron dense, anti-APGA positive layer. The wall forming bodies type 2 appeared, subsequently, to give rise to the electron lucent inner layer. Thus, oocyst wall formation in E. maxima represents a sequential release of the contents of the veil forming bodies, wall forming bodies types 1 and 2 and this may be controlled at the level of the rough endoplasmic reticulum/Golgi body.  相似文献   

7.
Sarcocystis neurona, an apicomplexan parasite, is the primary causative agent of equine protozoal myeloencephalitis. Like other members of the Apicomplexa, S. neurona zoites possess secretory organelles that contain proteins necessary for host cell invasion and intracellular survival. From a collection of S. neurona expressed sequence tags, we identified a sequence encoding a putative microneme protein based on similarity to Toxoplasma gondii MIC10 (TgMIC10). Pairwise sequence alignments of SnMIC10 to TgMIC10 and NcMIC10 from Neospora caninum revealed approximately 33% identity to both orthologues. The open reading frame of the S. neurona gene encodes a 255 amino acid protein with a predicted 39-residue signal peptide. Like TgMIC10 and NcMIC10, SnMIC10 is predicted to be hydrophilic, highly alpha-helical in structure, and devoid of identifiable adhesive domains. Antibodies raised against recombinant SnMIC10 recognised a protein band with an apparent molecular weight of 24 kDa in Western blots of S. neurona merozoites, consistent with the size predicted for SnMIC10. In vitro secretion assays demonstrated that this protein is secreted by extracellular merozoites in a temperature-dependent manner. Indirect immunofluorescence analysis of SnMIC10 showed a polar labelling pattern, which is consistent with the apical position of the micronemes, and immunoelectron microscopy provided definitive localisation of the protein to these secretory organelles. Further analysis of SnMIC10 in intracellular parasites revealed that expression of this protein is temporally regulated during endopolygeny, supporting the view that micronemes are only needed during host cell invasion. Collectively, the data indicate that SnMIC10 is a microneme protein that is part of the excreted/secreted antigen fraction of S. neurona. Identification and characterisation of additional S. neurona microneme antigens and comparisons to orthologues in other Apicomplexa could provide further insight into the functions that these proteins serve during invasion of host cells.  相似文献   

8.
A novel cDNA sequence with an open reading frame of 774 bp from Eimeria tenella F2 hybrid strain (ETRH01) was isolated from a lambda cDNA library with a monoclonal antibody against sporozoite. Analysis of the genomic sequence suggests that this is an intronless gene. The deduced protein sequence has 257 amino acids with a calculated molecular weight of 28.349 kDa and an isoelectric point of 8.56. Sequence analysis revealed seven transmembrane domains and a rhomboid domain within the protein. RT-PCR result indicates that this gene was expressed in all of the five E. tenella isolates analyzed. To further study the role of this novel gene in the life cycle of E. tenella, ETRH01 was successfully expressed using pET28b(+) expression system.  相似文献   

9.
Fibrinogen-related proteins play important roles in innate immunity. We isolated a fibrinogen-related protein gene (MjFREP1) in kuruma shrimp Marsupenaeus japonicus. MjFREP1 encoded a protein of 270 amino acids, including a 223 amino acid fibrinogen-like domain. Quantitative real-time polymerase chain reaction analysis shows that MjFREP1 is mainly expressed in the gills and the expression is significantly upregulated by Vibrio anguillarum, Staphylococcus aureus, or white spot syndrome virus (WSSV) challenge. Recombinant MjFREP1 fibrinogen-like domain agglutinates Gram-positive bacteria Bacillus subtilis, Bacillus thuringiensis, Bacillus megaterium, and S. aureus in the presence of calcium ions. The fibrinogen-like domain of MjFREP1 binds peptidoglycans, LPS, bacteria, and the VP28 of WSSV. These results suggest that the MjFREP1 may play an important role in the shrimp immune response against different pathogens.  相似文献   

10.
The Ancylostoma-secreted proteins are a family of nematode-specific cysteine-rich secreted proteins belonging to the pathogenesis-related protein superfamily. Previously we reported that third stage infective larvae of Ancylostoma caninum produce two different Ancylostoma-secreted proteins, a single and double-domain Ancylostoma-secreted protein, designated as Ancylostoma-secreted protein-1 and Ancylostoma-secreted protein-2, respectively. Here we report that adult A. caninum hookworms produce and release four additional Ancylostoma-secreted proteins (Ancylostoma-secreted protein-3-6). Using antiserum against adult excretory/secretory products, Ancylostoma-secreted protein cDNAs were isolated from cDNA expression libraries. Immunolocalisation experiments using specific antisera indicated that the single-domain Ac-Ancylostoma-secreted protein-3 is located in the adult pharyngeal and oesophageal glands. Ac-Ancylostoma-secreted protein-4, Ancylostoma-secreted protein-5 and Ancylostoma-secreted protein-6 are composed of two pathogenesis-related protein domains linked in tandem as a heterodimorphic repeat. Ac-Ancylostoma-secreted protein-4 is localised to the cuticular surface of the adult hookworm, whereas Ac-Ancylostoma-secreted protein-5 was found in the intestinal brush border membrane, and Ancylostoma-secreted protein-6 in the cephalic and excretory glands. All of the adult Ancylostoma-secreted proteins were identified in excretory/secretory products of adult hookworms by Western blotting and are presumably released by the parasite. None of the adult Ancylostoma-secreted proteins were detected by immunoblotting in L3 extracts, although mRNAs of Ac-Ancylostoma-secreted protein-3 and Ac-Ancylostoma-secreted protein-4 were present in the larval stage. The functions of the adult Ancylostoma-secreted proteins are unknown, although the secretion of multiple family members by the adult suggests an important role in the establishment or maintenance of the parasitic relationship.  相似文献   

11.
The mreB gene family encodes actin-like proteins that determine cell shape by directing cell wall synthesis and often exists in one to three copies in the genomes of non-spherical bacteria. Intriguingly, while most wall-less bacteria do not have this gene, five to seven mreB homologs are found in Spiroplasma and Haloplasma, which are both characterized by cell contractility. To investigate the molecular evolution of this gene family in wall-less bacteria, we sampled the available genome sequences from these two genera and other related lineages for comparative analysis. The gene phylogenies indicated that the mreB homologs in Haloplasma are more closely related to those in Firmicutes, whereas those in Spiroplasma form a separate clade. This finding suggests that the gene family expansions in these two lineages are the results of independent ancient duplications. Moreover, the Spiroplasma mreB homologs can be classified into five clades, of which the genomic positions are largely conserved. The inference of gene gains and losses suggests that there has been an overall trend to retain only one homolog from each of the five mreB clades in the evolutionary history of Spiroplasma.  相似文献   

12.
Eimeria maxima is one of the seven Eimeria spp. that infect the chicken and cause the disease coccidiosis. The well characterised immunogenicity and genetic diversity associated with E. maxima promote its use in genetics-led studies on avian coccidiosis. The development of a genetic map for E. maxima, presented here based upon 647 amplified fragment length polymorphism markers typed from 22 clonal hybrid lines and assembled into 13 major linkage groups, is a major new resource for work with this parasite. Comparison with genetic maps produced for other coccidial parasites indicates relatively high levels of genetic recombination. Conversion of ∼14% of the markers representing the major linkage groups to sequence characterised amplified region markers can provide a scaffold for the assembly of future genomic sequences as well as providing a foundation for more detailed genetic maps. Comparison with the Eimeria tenella genetic map produced 10 years ago has revealed a less biased marker distribution, with no more than nine markers mapped within any unresolved heritable unit. Nonetheless, preliminary bioinformatic characterisation of the three largest publicly available genomic E. maxima sequences suggest that the feature-poor/feature-rich structure which has previously been found to define the first sequenced E. tenella chromosome also defines the E. maxima genome. The significance of such a segmented genome and the apparent potential for variation in genetic recombination will be relevant to haplotype stability and the longevity of future anticoccidial strategies based upon multiple loci targeted by novel chemotherapeutic drugs or recombinant subunit vaccines.  相似文献   

13.
14.
The formation of disulfide bonds between cysteine residues is a rate-limiting step in protein folding. To control this oxidative process, different organisms have developed different systems. In bacteria, disulfide bond formation is assisted by the Dsb protein family; in eukarya, disulfide bond formation and rearrangement are catalyzed by PDI. In thermophilic organisms, a potential key role in disulfide bond formation has recently been ascribed to a new cytosolic Protein Disulphide Oxidoreductase family whose members have a molecular mass of about 26 kDa and are characterized by two thioredoxin folds comprising a CXXC active site motif each. Here we report on the functional and structural characterization of ApPDO, a new member of this family, which was isolated from the archaeon Aeropyrum pernix K1. Functional studies have revealed that ApPDO can catalyze the reduction, oxidation and isomerization of disulfide bridges. Structural studies have shown that this protein has two CXXC active sites with fairly similar geometrical parameters typical of a stable conformation. Finally, a theoretical calculation of the cysteine pK(a) values has suggested that the two active sites have similar functional properties and each of them can impart activity to the enzyme. Our results are evidence of functional similarity between the members of the Protein Disulphide Oxidoreductase family and the eukaryotic enzyme PDI. However, as the different three-dimensional features of these two biological systems strongly suggest significantly different mechanisms of action, further experimental studies will be needed to make clear how different three-dimensional structures can result in systems with similar functional behavior.  相似文献   

15.
Schistosoma mansoni is a major causative agent of schistosomiasis, which constitutes a severe health problem in developing countries. We have previously described the SmATPDase1 gene, encoding a protein from the external surface of the parasites. In this work, we describe the cloning and characterization of SmATPDase2, a novel CD39-like ATP diphosphohydrolase gene in S. mansoni. In silico analysis of the protein encoded by SmATPDase2 predicts a single N-terminal transmembrane domain similar to that described for secreted human apyrase isoforms. Immuno-colocalization experiments detected both SmATPDase proteins at the S. mansoni adult worm tegument basal and apical membranes, but only SmATPDase2 in the tegument syncytium. SmATPDase2 but not SmATPDase1 protein was detected by Western blot in culture medium supernatants following incubation of adult worms in vitro, indicating that SmATPDase2 was secreted by the parasite to the medium. Taken together these data suggest a non-redundant role for SmATPDase2 in the parasite-host interplay.  相似文献   

16.
Vaccination with proteins from gametocytes of Eimeria maxima protects chickens, via transfer of maternal antibodies, against infection with several species of Eimeria. Antibodies to E. maxima gametocyte proteins recognise proteins in the wall forming bodies of macrogametocytes and oocyst walls of E. maxima, Eimeria tenella and Eimeria acervulina. Homologous genes for two major gametocyte proteins - GAM56 and GAM82 - were found in E. maxima, E. tenella and E. acervulina. Alignment of the predicted protein sequences of these genes reveals that, as well as sharing regions of tyrosine richness, strong homology exists in their amino-terminal regions, where protective antibodies bind. This study confirms the conservation of the roles of GAM56 and GAM82 in oocyst wall formation and shows that antibodies to gametocyte antigens of E. maxima cross-react with homologous proteins in other species, helping to explain cross-species maternal immunity.  相似文献   

17.
Highly effective recombinant vaccines have been developed against Taenia ovis infection in sheep, Taenia saginata infection in cattle, Taenia solium infection in pigs, Echinococcus granulosus and Echinococcus multilocularis infections in a variety of intermediate host species. These vaccines have been based on the identification and expression in Escherichia coli of antigens derived from the oncosphere life cycle stage, contained within the parasites' eggs. Investigation of the molecular aspects of these proteins and the genes encoding them have revealed a number of common features, including the presence of a predicted secretory signal sequence, and one or two copies of a fibronectin type III domain, each encoded by separate exons within the associated gene. Evidence has been obtained to confirm glycosylation of some of these antigens. Ongoing investigations will shed light on the biological roles played by the proteins within the parasites and the mechanism by which they make the parasites vulnerable to vaccine-induced immune responses.  相似文献   

18.
The transthyretin-related protein (TRP) family comprises proteins predicted to be structurally related to the homotetrameric transport protein transthyretin (TTR). The function of TRPs is not yet fully established, but recent data suggest that they are involved in purine catabolism. We have determined the three-dimensional structure of the Escherichia coli TRP in two crystal forms; one at 1.65 A resolution in the presence of zinc, and the other at 2.1 A resolution in the presence of zinc and bromide. The structures revealed five zinc-ion-binding sites per monomer. Of these, the zinc ions bound at sites I and II are coordinated in tetrahedral geometries to the side chains of residues His9, His96, His98, Ser114, and three water molecules at the putative ligand-binding site. Of these four residues, His9, His98, and Ser114 are conserved. His9 and His98 bind the central zinc (site I) together with two water molecules. The side chain of His98 also binds to the zinc ion at site II. Bromide ions bind at site I only, replacing one of the water molecules coordinated to the zinc ion. The C-terminal four amino acid sequence motif Y-[RK]-G-[ST] constitutes the signature sequence of the TRP family. Two Tyr111 residues form direct hydrogen bonds to each other over the tetramer interface at the area, which in TTR constitutes the rear part of its thyroxine-binding channel. The putative substrate/ligand-binding channel of TRP is consequently shallower and broader than its counterpart in TTR.  相似文献   

19.
Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to 10 microM of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.  相似文献   

20.
Giardia lamblia, a protozoan causing diarrheal outbreaks, is one of the main pathogens monitored in developed countries. Immunoscreening of G. lamblia expression library using the monoclonal antibodies (mAb) against G. lamblia, identified a subset of antigenic proteins in this protozoan, which are proteins belonging to GHSP (Giardia head-stalk protein), GHSP115, GHSP138, and GHSP180. In order to map the epitope region of GHSP115, the corresponding open reading frame was dissected into three parts and expressed as recombinant proteins with histidine tags. Western blot analysis of these recombinant proteins with mAbs reacting with GHSP115 indicated that one-third of the C-terminus of GHSP115 showed immunoreactivity with the mAb. Intracellular location of GHSP115 was examined both in trophozoites and encysting cells of G. lamblia by an immunofluorescence assay, indicating that location of GHSP115 varies during encystation. These results suggest that GHSP115 is an abundant and antigenic protein, which is differentially localized during life cycle of G. lamblia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号