首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To elucidate the mechanism of bloom outbreaks of Chattonella ovata (Raphidophyceae), we investigated the cysts of C. ovata and succeeded in finding them from the bottom sediments of Hiroshima Bay. The morphology of the cysts was mostly hemispherical in shape, with a diameter of ca. 30 μm and height of ca. 20 μm. The cysts were usually adhering to solid materials, such as diatom frustules, yellow-greenish in color and had several dark brown grains. The cyst wall was smooth and had no ornamentation. Because the morphological characteristic of the cysts was in general agreement with those of Chattonella antiqua and Chattonella marina, it was difficult to differentiate the cysts of these three species. Germination of the cysts of C. ovata was observed at temperatures from 17.5 to 30 °C, but not at 15 °C or below. The number of the germinated cysts increased with increasing temperature and the optimum temperature for germination was 30 °C. Although cysts of C. antiqua and C. marina germinated at temperatures from 15 to 30 °C, optimum temperature of germination was 22.5 °C. The lower limit and optimum temperatures for germination of C. ovata cysts was higher than for C. antiqua and C. marina. The role of cysts in the population dynamics of C. ovata is discussed.  相似文献   

2.
A chitosanase was purified from the culture supernatant of Serratia marcescens TKU011 with shrimp shell wastes as the sole carbon/nitrogen source. Zymogram analysis revealed the presence of chitosanolytic activity corresponding to one protein, which was purified by a combination of ion-exchange and gel-filtration chromatography. The molecular weight of the chitosanase was 21 kDa and 18 kDa estimated by SDS–PAGE and gel-filtration, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitosanase were 5, 50 °C, pH 4–8, and <50 °C, respectively. The chitosanase was inhibited completely by EDTA, Mn2+, and Fe2+. The results of peptide mass mapping showed that three tryptic peptides of the chitosanase were identical to a chitin-binding protein Cbp21 from S. marcescens (GenBank accession number gi58177632) with 63% sequence coverage.  相似文献   

3.
Critical thermal maximum (CTmax) and body water losses were measured in first instar larvae of Gnorimus nobilis, Osmoderma eremita (Trichiinae) and Cetonischema aeruginosa (Cetoniinae) when air temperature was increased gradually (0.5 °C/min) from 20 °C to the critical thermal maximum (CTmax), in dry air (near 0% R.H.).

The CTmax was significantly lower in O. eremita (45.6±0.7 °C) than in G. nobilis (48.5±0.6) and C. aeruginosa (51.4±0.9 °C).

An increase of 10 °C (30–40 °C) induced a 2-fold increase of the water loss in C. aeruginosa and O. eremita (Q10=2.10±0.12 and 2.13±0.20, respectively). In the range from 40 to 45 °C to CTmax a strong increase of the water loss was observed in O. eremita and C. aeruginosa, respectively. Body water losses were significantly lower in C. aeruginosa than in O. eremita and G. nobilis over the range 20 °C—CTmax; no significant difference occurred between G. nobilis and O. eremita.  相似文献   


4.
A thermostable, alkaline active xylanase was purified to homogeneity from the culture supernatant of an alkaliphilic Bacillus halodurans S7, which was isolated from a soda lake in the Ethiopian Rift Valley. The molecular weight and the pI of this enzyme were estimated to be around 43 kDa and 4.5, respectively. When assayed at 70 °C, it was optimally active at pH 9.0–9.5. The optimum temperature for the activity was 75 °C at pH 9 and 70 °C at pH 10. The enzyme was stable over a broad pH range and showed good thermal stability when incubated at 65 °C in pH 9 buffer. The enzyme activity was strongly inhibited by Mn2+. Partial inhibition was also observed in the presence of 5 mM Cu2+, Co2+ and EDTA. Inhibition by Hg2+ and dithiothreitol was insignificant. The enzyme was free from cellulase activity and degraded xylan in an endo-fashion.  相似文献   

5.
The enthalpy of unfolding (ΔuH) of carbonic anhydrase II was determined by titrating the protein with acid and measuring the heat using isothermal titration calorimetry (ITC) in the temperature range of 5 to 59 °C. By combining the ITC results with our previous findings by differential scanning calorimetry (DSC) in the temperature range of 39 to 72 °C, the ΔuH dependence over a wide temperature range was obtained. The temperature dependence of the enthalpy displays significant curvature indicating that the heat capacity of unfolding (ΔuCp) is dependent on temperature. The T-derivative of ΔuCp was equal to 100 ± 30 J/(mol × K2), with the result that the ΔuCp is equal to 15.8 kJ/(mol × K) at 5 °C, 19.0 kJ/(mol × K) at 37 °C and 21.8 kJ/(mol × K) at 64 °C. The enthalpy of unfolding is zero at 17 °C. At lower temperatures, the ΔuH becomes exothermic.

This method of determining protein unfolding thermodynamics using acid-ITC, significantly widens the accessible T-range, provides direct estimate of the thermodynamic parameters at physiological temperature, and gives further insight into the third T-derivative of the Gibbs free energy of unfolding.  相似文献   


6.
奶油栓孔菌Trametes lactinea是一种生物活性丰富的大型真菌。本研究在单因素试验的基础上,通过响应面法优化其菌丝体多糖的提取工艺,利用DEAE-Cellulose-52阴离子交换柱和Sephadex G-200层析柱对粗多糖进行分离纯化,获得TLMPS-0、TLMPS-1和TLMPS-3均一多糖组分。采用化学组成分析、UV-vis、FTIR、刚果红实验对3种多糖组分进行结构分析,并检测了多糖清除自由基的能力和还原力。结果表明,奶油栓孔菌菌丝体多糖最优提取工艺为:提取温度99℃、料液比1:30 (g/mL)、提取时间5h,提取次数2次。在此工艺条件下,多糖提取率为4.01%。TLMPS-0、TLMPS-1和TLMPS-3的糖醛酸含量分别为12.91%±0.44%、8.24%±0.22%、7.50%±0.66%,硫酸基含量分别为22.24%±1.88%、14.55%±0.56%、18.68%±0.69%,并且证明TLMPS-0是一种α-吡喃型多糖或β-吡喃型多糖,而TLMPS-1是一种β-吡喃型多糖,均不具备三螺旋空间构象,此外,3种多糖组分均具有一定的清除DPPH自由基、ABTS自由基、羟基自由基的能力和铁离子还原能力,其中TLMPS-0抗氧化活性最强。研究结果为奶油栓孔菌多糖的功能研究与挖掘提供了研究基础与理论依据。  相似文献   

7.
A Phanerochaete chrysosporium cDNA predicted to encode endo-1,4-β-d-mannanase, man5D, was cloned and expressed in Aspergillus niger. The coding region of the gene man5D was predicted to contain, in order from the N-terminal: a secretory signal peptide, cellulose-binding domain, linker region, and glycosyl hydrolase family 5 catalytic site. The enzyme was purified from culture filtrate of A. niger transformants that carried the recombinant man5D. Recombinant Man5D had an apparent molecular size of about 65 kDa by SDS-PAGE, and optimal activity at pH 4.0–6.0 and 60 °C. It was stable from pH 4.0 to 8.0 and up to 60 °C. The enzyme showed affinity for Avicel cellulose, suggesting that the predicted cellulose-binding domain is biologically functional. The specific activities of Man5D on mannan, galactomannan, and glucomannan at pH 5 and 60 °C ranged from 160 to 460 μmol/(min mg), with apparent Km values from 0.54 to 2.3 mg/mL. Product analysis results indicated that Man5D catalyzes endo-cleavage, and appears to have substantial transglycosylase activity. When used to treat softwood kraft pulp, Man5D hydrolyzed mainly glucomannan and exhibited a positive effect as a prebleaching agent. Compared to a commercial prebleaching with xylanase, the prebleaching effect of Man5D was weaker but with reduced loss of fibre yield as determined by the release of solubilized sugars.  相似文献   

8.
In this study, the maximum and minimum lethal temperatures (LT50) of L. intermedia and L. laeta were determined in two treatments: gradual heating (25–50°C) and cooling (25°C to −5°C), and 1 h at a constant temperature. In gradual temperatures change, L. intermedia mortality started at 40°C and the LT50 was 42°C; for L. laeta, mortality began at 35°C and the LT50 was 40°C. At low temperatures, mortality was registered only at −5°C for both species. In the constant temperature L. intermedia showed a maximum LT50 at 35°C and L. laeta at 32°C; the minimum LT for both species was −7°C.  相似文献   

9.
Two thermophilic extracellular proteases, designated Lmm-protease-Lh (29 kDa) and Hmm-protease-Lh (62 kDa), were purified from the Lactobacillus helveticus from kefir, and found active in media containing dithiothreitol; the activity of Lmm-protease-Lh was increased significantly in media containing also EDTAK2. Both novel proteases maintained full activity at 60 °C after 1-h incubation at 10 °C as well as at 80 °C, showing optimum kcat/Km values at pH 7.00 and 60 °C. Only irreversible inhibitors specific for cysteine proteinases strongly inhibited the activity of both novel enzymes, while they remained unaffected by irreversible inhibitors specific for serine proteinases. Both enzymes hydrolyzed the substrate Suc-FR-pNA via Michaelis–Menten kinetics; conversely, the substrate Cbz-FR-pNA was hydrolyzed by Lmm-protease-Lh via Michaelis–Menten kinetics and by Hmm-protease-Lh via substrate inhibition kinetics. Valuable rate constants and activation energies were estimated from the temperature-(kcat/Km) profiles of both enzymes, and useful results were obtained from the effect of different metallic ions on their Michaelis–Menten parameters.  相似文献   

10.
A thermosensitive wild-type strain (PP201) of Rhizobium sp. (Cajanus) and its 14 heat-resistant mutants were characterized biochemically with regard to their cell surface (exopolysaccharides (EPSs) and lipopolysaccharides (LPSs)) properties and protein profile. Differences were observed between the parent strain and the mutants in all these parameters under high temperature conditions. At normal temperature (30 °C), only half of the mutant strains produced higher amounts of EPSs than the parent strain, but at 43 °C, all the mutants produced higher quantities of EPS. The LPS electrophoretic pattern of the parent strain PP201 and the heat-resistant mutants was almost identical at 30 °C. At 43 °C, the parent strain did not produce LPS but the mutants produced both kinds of LPSs. The protein electrophoretic pattern showed that the parent strain PP201 formed very few proteins at high temperature, whereas the mutants formed additional new proteins. A heat shock protein (Hsp) of 63–74 kDa was overproduced in all mutant strains.  相似文献   

11.
Lactobacillus reuteri shows certain beneficial effects to human health and is recognized as a probiotic. However, its application in frozen foods is still not popular because of its low survival during freezing and frozen storage. Cell immobilization technique could effectively exert protection effects to microbial cells in order to enhance their endurance to unfavorable environmental conditions as well as to improve their viability and cell concentration. Ca-alginate and κ-carrageenan were used to immobilize L. reuteri in this research, and the immobilized cells were exposed to different freezing temperatures, i.e. − 20 °C, − 40 °C, − 60 °C, − 80 °C, and stored at − 40 °C and − 80 °C for 12 weeks. The objectives were to study the protection effects of cell immobilization against the adverse conditions of freezing and frozen storage, and the effects of freezing temperatures to the immobilized cells. Cell immobilization was used to raise the survival of L. reuteri during freezing and frozen storage in order to develop frozen foods with the probiotic effects of L. reuteri. Results indicated that immobilized L. reuteri possessed better survival in both freezing and frozen storage. The survival of immobilized L. reuteri was higher than that of free cells, and the effects of lower freezing temperature were better than higher freezing temperature. The immobilization effects of Ca-alginate were found to be superior to κ-carrageenan. Cell immobilized L. reuteri exhibits potential to be used in frozen foods.  相似文献   

12.
Isoamylase catalyzes the hydrolysis of -1,6-glucosidic linkages of starch and related polysaccharides. In this study, the treX gene (GenBank accession no. AE006815 REGION: 9279 … 11435) encoding the thermophilic isoamylase was PCR-cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7lac promoter. Both wild-type and His-tagged isoamylases were expressed in Escherichia coli. The wild-type isoamylase was purified sequentially using heat treatment, nucleic acid precipitation, ion-exchange chromatography, and gel filtration chromatography while the His-tagged isoamylase was purified from the cell-free extract directly by metal chelating chromatography. Both enzymes were active only under their homo-trimer forms. In the absence of NaCl, both enzymes became inactive monomers. In addition, both enzymes were more stable when being stored at room temperature than at 4 °C. They had an apparent optimal pH of 5 and an optimal temperature at 75 °C. The enzyme activities remained unchanged after a 2 h incubation at 80 and 75 °C for the wild-type and His-tagged enzymes, respectively. These thermophilic isoamylases showed a potential to be used in industry to degrade the branching points of starch at a high temperature.  相似文献   

13.
Small heat shock proteins (HSPs) have been shown to confer thermotolerance in many organisms. Here, we demonstrate that small HSPs (sHSPs) can also be involved in development of thermotolerance in Pisolithus sp. In heat shock response, Pisolithus isolate RV82 synthesized proteins of molecular mass 28, 26 and 15–18 kDa. These group of proteins are synthesized when mycelial mass are exposed to heat shock temperature (42 °C) for short period (30 min) and incubated back at 28 °C, the optimal temperature for growth. Our results show sHSPs are an important biochemical alteration in ectomycorrhizal fungi under thermal stress.  相似文献   

14.
Yan QJ  Wang L  Jiang ZQ  Yang SQ  Zhu HF  Li LT 《Bioresource technology》2008,99(13):5402-5410
An extracellular β-xylosidase from the thermophilic fungus Paecilomyces thermophila J18 was purified 31.9-fold to homogeneity with a recovery yield of 2.27% from the cell-free culture supernatant. It appeared as a single protein band on SDS–PAGE with a molecular mass of approx 53.5 kDa. The molecular mass of β-xylosidase was 51.8 kDa determined by Superdex 75 gel filtration. The enzyme was a glycoprotein with a carbohydrate content of 61.5%. It exhibited an optimal activity at 55 °C and pH 6.5, respectively. The enzyme was stable in the range of pH 6.0–9.0 and at 55 °C. The purified enzyme hydrolyzed xylobiose and higher xylooligosaccharides but was inactive against xylan substrates. It released xylose from xylooligosaccharides with a degree of polymerization ranging between 2 and 5. The rate of xylose released from xylooligosaccharides by the purified enzyme increased with increasing chain length. It had a Km of 4.3 mM for p-nitrophenol-β-d-xylopyranoside and was competitively inhibited by xylose with a Ki value of 139 mM. Release of reducing sugars from xylans by a purified xylanase produced by the same organism increased markedly in the presence of β-xylosidase. During 24-hour hydrolysis, the amounts of reducing sugar released in the presence of added β-xylosidase were about 1.5–1.73 times that of the reaction employing the xylanase alone. This is the first report on the purification and characterization of a β-xylosidase from Paecilomyces thermophila.  相似文献   

15.
The genes encoding uracil-DNA N-glycosylase (UNG) from the marine, psychrophilic bacterium Vibrio salmonicida and the mesophilic counterpart Vibrio cholerae have been cloned and expressed in Escherichia coli. The purified proteins have been characterized in order to reveal possible cold adapted features of the V. salmonicida UNG (vsUNG) compared to the V. cholerae UNG (vcUNG). Characterization experiments demonstrated that both enzymes possessed the highest activities at pH 7.0–7.5 and at salt concentrations in the range of 25–50 mM NaCl. Temperature optima for activity were determined to approximately 30 °C for vsUNG and 50 °C for vcUNG. Temperature stability of the enzymes was compared at 4 °C and 37 °C, and vsUNG was found to be more temperature labile than vcUNG. Kinetic studies performed at three different temperatures, 15 °C, 22 °C and 37 °C, demonstrated higher catalytic efficiency for vsUNG compared to vcUNG due to lower KM-values. The increased substrate affinity of vsUNG is probably caused by an increased number of positively charged residues in the DNA-binding site of the enzyme compared to vcUNG. Thus, activity and stability measurements reveal typical cold adapted features of vsUNG.  相似文献   

16.
An artificial bifunctional enzyme, xylanase–cellulase, has been prepared by gene fusion. Three chimeric genes were constructed that encoded fusion proteins of different lengths. The fusion proteins exhibited both xylanase (XynX) and cellulase (Cel5Z::Ω) activity when cel5Z::Ω was fused downstream of xynX, but not when xynX was fused downstream of cel5Z::Ω. Activities of bifunctional enzymes decreased when a shorter xylanase peptide was fused. Three fusion enzymes were purified, and the molecular weights of the enzymes were estimated by CMC-SDS-PAGE and XYN-SDS-PAGE to be 149, 129, and 87 kDa, respectively. The fusion enzymes displayed optimum cellulase activity at pH 8.0 and 50 °C and optimum xylanase activity at pH 8.0 and 70 °C.  相似文献   

17.
Differential thermal calorimetry (DSC) analysis of partially dehydrated bovine bone, demineralized bone and bovine tendon collagen was performed up to 300 °C to determine factors influencing stability of mineralized collagen in bone tissue. Two endothermal regions were recognized. The first, attributed to denaturation of collagen triple helix, was hydration dependent and had a peak at 155–165 °C in bone, 118–137 °C in tendon and 131–136 °C in demineralized bone. The second region extended from 245 to 290 °C in bone and from 200 to 280 °C in tendon and was connected with melting and decomposition of collagen. Differences in thermodynamic parameters between cortical and trabecular bone tissue were stated. Activation energy of collagen unfolding in native bone tissue increased with dehydration of the bone. From the results of the present study we conclude that dehydrated bone collagen is thermally very stable both in native and in demineralized bone. Presence of mineral additionally stabilizes bone tissue.  相似文献   

18.
A simple in-vitro ‘wet-plate’ method for mass-producing Phytophthora nicotianae zoospores at ≥ 1.0 × 106 zoospores/ml is described. Temperature critically affected zoospore production; 22 °C was optimum, while 36 °C was completely inhibitory. Zoospores being the most important propagule of P. nicotianae, temperature of recycled irrigation water may be manipulated to reduce diseases in irrigated nursery crops.  相似文献   

19.
A highly enantioselective carbonyl reductase produced by a new yeast strain Candida viswanathii MTCC 5158, which was isolated using an acetophenone enriched medium, has been purified and characterized. The enzyme has been purified to near homogeneity using ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The molecular properties of the carbonyl reductase suggested the native enzyme to be tetrameric, with an apparent molecular weight of 120 kDa, the monomer being about 29 kDa. Acetyl aryl ketones were found to be the preferred substrates for the enzyme and the best reaction was the enantioselective reduction of acetophenone. The enzyme yielded (S)-alcohol in preference to (R)-alcohol and utilized NADH, but not NADPH as the cofactor. The purified enzyme exhibited maximum enzyme activity at pH 7.0 and 60 °C. The enzyme retained about 80% of its activity after 7 h incubation at 25 °C in sodium phosphate buffer (50 mM, pH 7.0). The addition of reducing agents like dithiothreitol and β-mercaptoethanol enhanced the enzyme activity while organic solvents, detergents and chaotropic agents had deleterious effect on enzyme activity. Metal chelating agents like hydroxyquinoline and o-phenanthroline have significant effect on enzyme activity suggesting that the carbonyl reductase required the presence of a tightly bound metal ion for activity or stability. The maximum reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) for acetophenone and NADH were 59.21 μmol/(min mg) protein and 0.153 mM and 82.64 μmol/(min mg) protein and 0.157 mM at a concentration range of 0.2–2 mM acetophenone (NADH fixed at 0.5 mM) and 0.1–0.5 mM NADH (acetophenone fixed at 2 mM), respectively.  相似文献   

20.
An intracellular nitrilase was purified from a Fusarium solani O1 culture, in which the enzyme (up to 3000 U L−1) was induced by 2-cyanopyridine. SDS-PAGE revealed one major band corresponding to a molecular weight of approximately 40 kDa. Peptide mass fingerprinting suggested a high similarity of the protein with the putative nitrilase from Gibberella moniliformis. Electron microscopy revealed that the enzyme molecules associated into extended rods. The enzyme showed high specific activities towards benzonitrile (156 U mg−1) and 4-cyanopyridine (203 U mg−1). Other aromatic nitriles (3-chlorobenzonitrile, 3-hydroxybenzonitrile) also served as good substrates for the enzyme. The rates of hydrolysis of aliphatic nitriles (methacrylonitrile, propionitrile, butyronitrile, valeronitrile) were 14–26% of that of benzonitrile. The nitrilase was active within pH 5–10 and at up to 50 °C with optima at pH 8.0 and 40–45 °C. Its activity was strongly inhibited by Hg2+ and Ag+ ions. More than half of the enzyme activity was preserved at up to 50% of n-hexane or n-heptane or at up to 15% of xylene or ethanol. Operational stability of the enzyme was examined by the conversion of 45 mM 4-cyanopyridine in a continuous and stirred ultrafiltration-membrane reactor. The nitrilase half-life was 277 and 10.5 h at 35 and 45 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号