首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contents of alanine, proline, glycine, GABA, glutamate, and aspartate were measured in four bundles of axons (designated areas A through D) from the circumesophageal connective of the lobster (Homarus americanus). The contents of these amino acids were also determined in individual axons within specific bundles and in the external sheath covering the circumesophageal connective. Within the nerve bundles the levels of aspartate were highest of the amino acids measured, ranging from 1.95 +/- 0.12 mumol/mg protein in area C to 7.55 +/- 0.54 mumol/mg protein in area B. On the other hand, GABA had the lowest value in the four bundles; its highest level was found in area C (0.083 +/- 0.006 mu mol/mg protein) and the lowest in area B (none detected). The content of glycine ranged from 1.63 +/- 0.14 (area C) to 2.52 +/- 0.32 mumol/mg protein in area A; that for glutamate ranged from 0.390 +/- 0.019 (area C) to 1.01 +/- 1.03 (area B). The contents of alanine and proline changed relatively little from bundle-to-bundle. The content of aspartate was the highest of any of the amino acids assayed in individual axons (with diameters in the range of 40 to 65 mu) dissected from areas B and C. Glycine had the next highest content followed in order by glutamate, proline, and alanine. GABA was not detected in these axons. With the exception of GABA (which could not be detected), aspartate had the lowest level (0.066 +/- 0.017) and glycine had the highest level (2.00 +/- 0.498 mumol/mg protein) in the external sheath covering the the circumesophageal connective.  相似文献   

2.
The contents of alanine, proline, glycine, GABA, glutamate, and aspartate were measured in four bundles of axons (designated areas A through D) from the circumesophageal connective of the lobster (Homarus americanus). The contents of these amino acids were also determined in individual axons within specific bundles and in the external sheath covering the circumesophageal connective. Within the nerve bundles the levels of aspartate were highest of the amino acids measured, ranging from 1.95 ± 0.12 m̈mol/mg protein in area C to 7.55 ± 0.54 m̈mol/mg protein in area B. On the other hand, GABA had the lowest value in the four bundles; its highest level was found in area C (0.083 ± 0.006 m̈mol/mg protein) and the lowest in area B (none detected). The content of glycine ranged from 1.63 ± 0.14 (area C) to 2.52 ± 0.32 m̈mol/mg protein in area A; that for glutamate ranged from 0.390 ± 0.019 (area C) to 1.01 ± 0.103 (area B). The contents of alanine and proline changed relatively little from bundle-to-bundle. The content of aspartate was the highest of any of the amino acids assayed in individual axons (with diameters in the range of 40 to 65 m̈) dissected from areas B and C. Glycine had the next highest content followed in order by glutamate, proline, and alanine. GABA was not detected in these axons. With the exception of GABA (which could not be detected), aspartate had the lowest level (0.066 ± 0.017) and glycine had the highest level (2.00 ± 0.498 m̈mol/mg protein) in the external sheath covering the the circumesophageal connective.  相似文献   

3.
Using a gas chromatography procedure, the levels of several amino acids were determined in individual excitatory and inhibitory axons, in bundles of sensory fibers, and in muscle tissue from the walking limb of the lobster, Homarusamericanus. In addition, the levels of amino acids in the hemolymph were also determined. Of the amino acids assayed in the excitatory and inhibitory axons and in the sensory fibers the level of aspartate was highest whereas in hemolymph and muscle, aspartate had one of the lowest values. The levels of glutamate, glycine and proline were significantly higher in the excitatory axons than in the inhibitory axons. GABA was present in inhibitor axons and in the muscle tissue which these axons innervate and was not detected in the other axons assayed nor in the hemolymph. β-Alanine was present at low levels in hemolymph and in muscle but was not detected in the excitatory nor in the inhibitory axons.  相似文献   

4.
Discrete layers from frozen dried sections of Rhesus monkey retina were analyzed for each of four amino acids. Peak levels of glycine were found near the border of the inner nuclear and inner reticular layers, and were high throughout these two layers. The levels were less than 50% of the peak in the adjacent ganglion cells and outer reticular layers and fell to very low levels elsewhere. GABA was much more sharply restricted to the inner reticular layer and fell off on both sides to levels of 10% or less of the peak in the fiber and photoreceptor cell layers. Glutamate and aspartate were highest in the ganglion cell layer. On a lipid-free dry weight basis the peak aspartate level was about twice that of brain. Moderately high levels of both aspartate and glutamate were found in the inner reticular and fiber layers. Elsewhere the levels ranged from 20 to 50% of the peak, and both amino acids were relatively low in optic nerve. The amino acid distributions are compatible with a transmitter function for GABA in amacrine cells and for glycine in horizontal and amacrine cells. Glutamate and aspartate may be especially high in Müller fibers, ganglion cells or both.  相似文献   

5.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

6.
Sensitivity to glutamate, aspartate, glycine and GABA was examined in giant interneurons of the lamprey spinal cord.1. The membrane potentials evoked by iontophoretic application decayed with varied time constants specific to amino acids: 2.5 sec for glutamate, 6.3 sec for glycine and 10.3 sec for GABA. li|2. Bath-applied amino acids reduced the input resistance by varying degrees; when glutamate effect was taken as 1, relative effects of aspartate, glycine and GABA were 0.28, 40.5 and 12.3, respectively.3. Glutamate sensitivity was fairly uniform in both the soma and the dendrites. Glycine sensitivity, as well as GABA, was high in the soma and declined steeply along the dendrites by iontophoresis.  相似文献   

7.
The aim of this study was to compare the changes in amino acids (alanine, aspartate, GABA, glutamate, glutamine, glycine, serine taurine) that are produced in different regions of the neonate brain (telencephalon, diencephalon cerebellum, brain stem) following a survivable period of anoxia and after the re-establishment of air respiration. Anoxia provoked different responses in the different regions. The changes during the anoxic period were as follows. In the brain stem there was a decrease in aspartate, in the telencephalon there was a significant increase in GABA and alanine and a decrease in aspartate, in the diencephalon, glutamate and GABA increased, and in the cerebellum, glycine and alanine levels were enhanced. The changes during recovery were even more dissimilar. Here the greatest shifts were seen in the brain stem with increases in glutamine, GABA, aspartate, glycine, serine, alanine, and taurine. In the telencephalon glutamate fell and alanine increased, in the diencephalon GABA increased, and in the cerebellum, glutamate fell while glycine and alanine increased. In none of the major brain regions did the pattern of changes in neurotransmitters correspond to that seen in anoxic tolerant species.  相似文献   

8.
The effects of one intraperitoneal injection of 60–65 mg/kg of 3-acetylpyridine (3-AP) on the levels of aspartate, glutamate, GABA, taurine, glycine, and alanine in the cerebellum, medulla, telencephalon, and diencephalon-mesencephalon of the rat were studied at various times (4–28 days) after injection. In the first 4–7 days, the levels of glutamate, GABA, glycine, and alanine in the cerebellum were 10–30% higher in the 3-AP-treated rats than in the control animals. By day 14, the levels of these four amino acids were normal (in the case of glutamate and glycine) or below normal (for GABA and alanine). By day 21, the values for GABA and alanine returned to normal. In the first 7 days, the level of aspartate in the cerebellum was the same in both the 3-AP- and saline-injected groups. From days 14 to 28, the level of aspartate in the cerebellum was 10–20% lower in the 3-AP-injected group than in the saline-treated animals. The level of taurine in the cerebellum was 15–30% lower in the 3-AP group than in the control group from days 7 to 28. The pattern of changes observed in the medulla in the first 7 days was similar to that found in the cerebellum for this period. However, unlike the data for the cerebellum, the level of aspartate in the medulla was unchanged by the 3-AP injection from day 14 to day 28, and the level of glutamate in the medulla remained higher (10–15%) from days 14 to 28 in the 3-AP-injected animals with respect to control values. The levels of taurine in the medulla were lower (10–15%) from day 7 to day 28 in the 3-AP injected group with respect to control values. The injection of 3-AP did not alter the levels of aspartate, glutamate, GABA, taurine, glycine, or alanine in the telencephalon on days 7, 14, 21, or 28 and in the diencephalon-mesencephalon on day 21 with respect to control levels.  相似文献   

9.
Nitrogen metabolism in tumor bearing mice   总被引:1,自引:0,他引:1  
In experiments with whole animals infested with a highly malignant strain of Ehrlich ascites tumor cells, serial concentrations of amino acids were determined for host plasma, ascitic fluid, and tumor cells, throughout tumor development. Concentration gradients of glutamine, asparagine, valine, leucine, isoleucine, phenylalanine, tyrosine, histidine, tryptophan, arginine, serine, methionine, and taurine from the host plasma toward the ascitic liquid were established; while on the other hand, concentration gradients from the ascitic liquid toward the plasma were established for glutamate, aspartate, glycine, alanine, proline, and threonine. With the exception of aspartate the concentrations of these amino acids were highest inside the cells. Arginine was the only amino acid not detected in tumor cells. In vitro incubations of tumor cells in the presence of glutamine and/or glucose, as the energy and nitrogen sources, confirmed the amino acid fluxes previously deduced from the observed relative concentrations of amino acids in plasma, ascitic liquid, and tumor cells, suggesting that glutamate, alanine, aspartate, glycine, and serine can be produced by tumors. These findings support that changes in amino acid patterns occurring in the host system are related to tumor development.  相似文献   

10.
Aphids are highly specialized insects that feed on the phloem-sap of plants, the amino acid composition of which is very unbalanced. Amino acid metabolism is thus crucial in aphids, and we describe a novel investigation method based on the use of 14C-labeled amino acids added in an artificial diet. A metabolism cage for aphids was constructed, allowing for the collection and analysis of the radioactivity incorporated into the aphid body, expired as CO2, and rejected in the honeydew and exuviae. This method was applied to the study of the metabolism of eight energetic amino acids (aspartate, glutamate, glutamine, glycine, serine, alanine, proline, and threonine) in the pea aphid, Acyrthosiphon pisum. All these amino acids except threonine were subject to substantial catabolism as measured by high 14CO2 production. The highest turnover was displayed by aspartate, with 60% of its carbons expired as CO2. For the first time in an aphid, we directly demonstrated the synthesis of three essential amino acids (threonine, isoleucine, and lysine) from carbons of common amino acids. The synthesis of these three compounds was only observed from amino acids that were previously converted into glutamate. This conversion was important for aspartate, and lower for alanine and proline. To explain the quantitative results of interconversion between amino acids, we propose a compartmentation model with the intervention of bacterial endosymbiotes for the synthesis of essential amino acids and with glutamate as the only amino acid supplied by the insect to the symbiotes. Moreover, proline exhibited partial conversion into arginine, and it is suggested that proline is probably indirectly involved in excretory nitrogen metabolism. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Slices of guinea-pig cerebral cortex were used to investigate the effects of the antispastic drug β-(p-chlorophenyl)-γ-aminobutyrate (Baclofen, Lioresal) on the release and metabolism of several amino acids. Electrical stimulation of slices evoked (1) a relatively large release, probably from nerve terminals, of 14C-labelled tissue glumate, aspartate and γ-aminobutyrate (GABA) synthesized via metabolism of D-[U-14C]glucose and (2) a relatively small release, probably not from nerve terminals, of 14C-labelled tissue alanine and threonine-serine-glutamine and of exogenous radiolabeled glutamate, aspartate, GABA and α-aminoisobutyrate that had been taken up from the medium. Baclofen (4μM) preferentially inhibited the release of 14C-labelled tissue glutamate and aspartate. It had no effect on the concentrations and specific radio-activities of most of the labelled tissue amino acids in the slices. However, it increased the turnover of 14C-labelled tissue glycine approx 4-fold and elevated the specific radio activity of tissue alanine by 40%. It was concluded that Baclofen affects transmission not by modulating the release of the inhibitory amino acid GABA, but by selectively suppressing the release of the excitatory amino acids glutamate and aspartate from nerve terminals. Provided that this action obtains in the spinal cord, it may at least partly underlie the antispastic action of Baclofen as glutamate and aspartate are presumed to be the transmitters released from terminals of non-nociceptive primary afferent fibers and excitatory interneurons, respectively. The Baclofen-induced increase in glycine turnover suggests an additional effect on inhibitory glycinergic interneurons in the spinal cord.  相似文献   

12.
Amino acid neurotransmitters in the nucleus tractus solitarius (NTS) are thought to play a key role in the mediation of visceral reflexes and glutamate has been proposed as the neurotransmitter of visceral afferent nerves projecting to this region. The present studies sought to characterize the use of in vivo microdialysis to examine extracellular fluid levels of amino acids in the NTS of anesthetized rats. Using a microdialysis probe that was 450 μm in length and a sensitive HPLC assay for amino acids, amino acids could be measured in dialysate samples collected from the NTS. Perfusion of the microdialysis probe with 60 mM K±, to elicit depolarization of nerve terminals in the vicinity of the probe, resulted in increased dialysate fluid levels of aspartate, glutamate, glycine, taurine, and GABA. In contrast, glutamine and tyrosine were decreased and other amino acids were not significantly affected. Prior removal of the ipsilateral nodose ganglion did not alter the K±-evoked changes in dialysate levels of any of these amino acids. Electrical stimulation of the vagus nerves, using a variety of stimulus parameters, did not significantly alter dialysate levels of glutamate or any of the other amino acids that were measured. Blockade of glutamate uptake with dihydrokainate increased dialysate levels of glutamate, aspartate, and GABA, but in the presence of dihydrokainate vagal stimulation did not alter dialysate levels of these amino acids. The results show that in vivo microdialysis can be used to examine amino acid efflux in the rat NTS and provide further evidence for amino acidergic neural transmission in the NTS. However, these studies fail to support the hypothesis that vagal afferents release glutamate or aspartate.  相似文献   

13.
Abstract— The effects of supramaximal electrical stimulation on the metabolism of amino acids and proteins in incubated superior cervical ganglia of the rat were studied by the use of a gas-liquid chromatographic (GLC) assay procedure. Stimulation at 5 Hz for 2 h caused an apparent increase in tissue levels of free amino acids, with alanine, serine, glycine, valine, threonine, isoleucine and aspartate (+ asparagine) most noticeably affected. The amino acid composition (partial) of the TCA-insoluble proteins of resting and stimulated ganglia was approximately the same after 60 min of incubation, but there was less TCA-insoluble protein in the stimulated ganglia. The addition of amino acids (at plasma concentrations) to the standard media had no apparent affect on the amino acid composition of this protein fraction. Stimulation for 0 , 5 h initially increased the efflux of alanine, valine, proline and ornithine into the incubation media but prolonged stimulation (for 4–0 h) decreased the efflux of alanine, serine, glycine and isoleucine and increased the efflux of lysine into the incubation media. The leakage of amino acids from the ganglia appeared to be a sodium-dependent process. The incorporation of 14C from [U-14C]glucose into glutamate (+ glutamine) and aspartate (+ asparagine) was greater in stimulated than in resting ganglia. However, the conversion of glutamate carbons from [U-14C]l -glutamate into aspartate was not affected by stimulation. Incorporation of 14C from [U-14C]glucose into glycine and serine was apparently not affected by stimulation during the 60 min of incubation. However, serine was the only amino acid which exhibited a higher specific radioactivity in stimulated ganglia than in resting ganglia incubated for 4 h in standard media. Lithium ions had the apparent specific effect of increasing the labelling with 14C from [U-14C]glucose into ornithine, and increasing the efflux and overall metabolism of serine in the ganglia. Incorporation of 14C from [U-14C]glucose into proteins was lower in the stimulated than in the resting ganglia if compensation was made for the higher radioactivity available in the total free amino acid pool of the stimulated ganglia. The rate of 14C incorporation from [U-14C]glutamate into the TCA-insoluble proteins of resting ganglia was greater when no other amino acids at concentrations approximating plasma levels were added to the bathing media; this rate was lower in stimulated than in resting ganglia.  相似文献   

14.
Turnover rates of amino acid neurotransmitters in regions of rat cerebellum   总被引:1,自引:0,他引:1  
The turnover rates of aspartate, gamma-aminobutyric acid (GABA), glutamate, glutamine, alanine, serine, and glycine were measured in five regions of rat cerebellum. Turnover rates of the putative neurotransmitters (aspartate, glutamate, and GABA) were 2-20-fold higher than those of alanine and serine, and generally consistent with the proposed neurotransmitter functions for these amino acids. However, glutamate turnover was high and similar in magnitude in the deep nuclei and granule layer, suggesting possible release, not only from parallel fibers, but from mossy fibers as well. The differential distribution of turnover rates for GABA supports its neuronal release by Purkinje, stellate, basket, and Golgi cells, whereas aspartate may be released by both climbing and mossy fibers. The distribution of glycine turnover rates is consistent with release from Golgi cells, whereas alanine may be released from granule cell parallel fibers. Turnover rates measured in two other motor areas, the striatum and motor cortex, indicated that utilization of these amino acid neurotransmitters is differentially distributed in brain motor regions. The data indicate that turnover rate measurements may be useful in identifying neurotransmitter function where content measurements alone are insufficient.  相似文献   

15.
Abstract: The amino acid content of synaptosomes was determined in six regions of rat brain, and in all regions the five predominant amino acids were glutamate, glutamine, aspartate, taurine, and GABA (γ-aminobutyrate). However, the proportions of the individual amino acids varied considerably from one region to another, the GABA content being particularly high and the taurine content low in synaptosomes from the diencephalon and mesencephalon. Administration of isonicotinic acid hydrazide to rats lowered the synaptosomal GABA level by similar amounts in all brain regions, but the administration of gabaculine resulted in a particularly long-acting elevation in GABA levels in the nerve endings of the diencephalon and mesencephalon. The possibility is raised that the high GABA levels in the nerve terminals of the diencephalon may be involved in the gabaculine-induced lowering of the body temperature of the rats. A constancy in the amount of the synaptosomal pool of "aspartate + glutamate + glutamine + GABA" was observed despite large changes in the relative amounts of the four amino acids brought about by gabaculine.  相似文献   

16.
Abstract: The concentrations of alanine, aspartate, γ-aminobutyric acid, glutamine, glutamate, and glycine were measured in the pigeon optic nerve and in the individual tectal layers. Characteristic topographical distribution patterns were observed for the different amino acids. After unilateral retinal ablation, the concentration of aspartate and glutamate was decreased in the nerve and contralateral tectum. The reduction was restricted to the superficial part of the tectum, which receives a direct retinal input. The maximal loss was measured in the first two layers, where aspartate was reduced by 51% and glutamate by 75% in comparison with the ipsilateral side 4 weeks after ablation. The results favor a special role for aspartate and glutamate in pigeon retino-tectal afferents.  相似文献   

17.
The content of γ-amino butyric acid (GABA) and of other water soluble amino acids in bovine brain synaptic vesicles was determined by a modified automated amino acid analysis method. Following subcellular fractionation, GABA, glutamate and aspartate were distributed largely in the supernatant fractions and in the upper layer of the sucrose gradient. Only 10–20% of the total content was associated with the vesicular fraction. On the other hand, the other water soluble amino acids, such as serine, glycine and alanine, were evenly distributed between cytoplasmic and particulate fractions in a similar pattern to that observed with cytoplasmic enzyme markers. The results may indicate specific association of GABA, glutamate and aspartate with low density particles or cytoplasmic components.  相似文献   

18.
The content of glutamate, GABA, aspartate, glycine and alanine was determined in the cerebellum, brain stem and cerebrum of three different mutant mice which have been named ‘staggerer’, ‘weaver’ and ‘nervous’ on the basis of neurological symptoms. In the ‘staggerer’ and ‘weaver’ mutants there is an almost complete absence of granule cells in the cerebellar cortex while in the ‘nervous’ mutant there is a loss of Purkinje cells (and to a lesser extent a loss of granule cells) in the cerebellar cortex. In the cerebellum of the ‘weaver’ mutant, the content of glutamate was signficantly lower (P < 0.025) than control values (8.77 ± 0.76 vs 12.0 ± 1.3 μmol/g tissue wet wt) and the contents of GABA and glycine were significantly greater than normal levels. In the cerebellum of the ‘staggerer’ mutant, the content of glutamate was significantly lower (6.62 ± 0.70 μmol/g) and the contents of glycine and alanine significantly higher than control values. In the cerebrum and brain stem regions of the staggerer mutant, weaver mutant and the normals the contents of the five amino acids were the same. The contents of glycine and alanine in the cerebellum, GARA and glycine in the brain stem and GABA and alanine in the cerebrum of the nervous mutants were higher than control values. The data are discussed in terms of a possible role for glutamate functioning as an excitatory transmitter when released from the cerebellar granule cells.  相似文献   

19.
By macroautoradiography and by GLC separation, differences in the uptake of radioactive carbon from [U-14C]glucose into free amino acids (glutamate + glutamine, aspartate + asparagine, GABA, alanine and glycine) in mouse cerebral neocortex, hippocampus, thalamus and hypothalamus were investigated. (1) The autoradiographical densities in the thalamus, cerebral neocortex and hippocampus measured with a microdensitometer were higher than that in the hypothalamus at 5 min after subcutaneous injection. At 180 min, densities in the cerebral neocortex, hippocampus and hypothalamus were higher than that in thalamus. (2) The free amino acid levels determined by GLC varied with each brain region. (3) The specific radioactivity (d.p.m./μmol) of alanine in each brain region was higher than that of the other amino acids at 5 min after the injection. The specific radioactivity of GABA in the brain regions was clearly higher than that of (glutamate + glutamine), (aspartate + asparagine) and glycine at 5 and 15 min. (4) The autoradiographical data were in good agreement with the chemical data at 5 min but were different at 180 min. (5) Variations in specific radioactivity of each free amino acid among brain regions at 5 min were influenced greatly by existing free amino acid concentrations in each region.  相似文献   

20.
Amino acids in bovine oviductal and uterine fluids were measured and compared with those in modified simplex optimized medium (KSOM) supplemented with either fetal calf serum or Minimum Essential Medium amino acids in addition to bovine serum albumin, fetal calf serum or polyvinyl alcohol. Concentrations of cysteine, threonine, tryptophan, alanine, aspartate, glycine, glutamate, proline, beta-alanine, and citrulline were higher in oviductal fluids than in KSOM-based culture media. Nonessential and essential amino acids were present in ratios of 5:1 and 2:1 in oviductal and uterine fluids, respectively. Concentrations of alanine (3.7 mM), glycine (14.1 mM) and glutamate (5.5 mM) were high in oviductal fluids, comprising 73% of the free amino acid pool. Of the amino acids measured in uterine fluids, alanine (3.1 mM), glycine (12.0 mM), glutamate (4.2 mM), and serine (2.7 mM) were highest in concentration, and the first three comprised 43% of the free amino acid pool. In conclusion, amino acid concentrations in the bovine reproductive tract were substantially higher than those in embryo culture media. Certain amino acids, particularly alanine, glutamate, glycine and taurine, are present in strikingly high concentrations in both oviductal and uterine fluids, suggesting that they might play important roles in early embryo development. The particular pattern of amino acid concentrations may be an important factor to be considered for the improvement of embryo culture media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号