首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
The iron-sulfur protein is an essential component of mitochondrial complex II (succinate dehydrogenase, SDH), which is a functional enzyme of both the citric acid cycle and the respiratory electron transport chain. This protein is encoded by a single-copy nuclear gene in mammals and fungi and by a mitochondrial gene in Rhodophyta and the protist Reclinomonas americana. In Arabidopsis thaliana, the homologous protein is now found to be encoded by three nuclear genes. Two genes (sdh2-1 andsdh2-2) likely arose from a relatively recent duplication event since they have similar structures, encode nearly identical proteins and show similar expression patterns. Both genes are interrupted by a single intron located at a conserved position. Expression was detected in all tissues analysed, with the highest steady-state mRNA levels found in flowers and inflorescences. In contrast, the third gene (sdh2-3) is interrupted by 4 introns, is expressed at a low level, and encodes a SDH2-3 protein which is only 67% similar to SDH2-1 and SDH2-2 and has a different N-terminal presequence. Interestingly, the proteins encoded by these three genes are probably functional because they are highly conserved compared with their homologues in other organisms. These proteins contain the cysteine motifs involved in binding the three iron-sulfur clusters essential for electron transport. Furthermore, the three polypeptides are found to be imported into isolated plant mitochondria.  相似文献   

2.
3.
Group II introns are large catalytic RNAs that are found in bacteria and organellar genomes of lower eukaryotes, but are particularly prevalent within mitochondria in plants, where they are present in many critical genes. The excision of plant mitochondrial introns is essential for respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self‐splicing ribozyme and its own intron‐encoded maturase protein. A hallmark of maturases is that they are intron‐specific, acting as cofactors that bind their intron‐containing pre‐RNAs to facilitate splicing. However, the degeneracy of the mitochondrial introns in plants and the absence of cognate intron‐encoded maturase open reading frames suggest that their splicing in vivo is assisted by ‘trans’‐acting protein factors. Interestingly, angiosperms harbor several nuclear‐encoded maturase‐related (nMat) genes that contain N‐terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. Here we show that nMAT4 (At1g74350) is required for RNA processing and maturation of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria. Seed germination, seedling establishment and development are strongly affected in homozygous nmat4 mutants, which also show modified respiration phenotypes that are tightly associated with complex I defects.  相似文献   

4.
5.
Mitochondrial genome organization and cytoplasmic male sterility in plants   总被引:2,自引:0,他引:2  
Plant mitochondrial genomes are much larger and more complex than those of other eukaryotic organisms. They contain a very active recombination system and have a multipartite genome organization with a master circle resolving into two or more subgenomic circles by recombination through repeated sequences. Their protein coding capacity is very low and is comparable to that of animal and fungal systems. Several subunits of mitochondrial functional complexes, a complete set of tRNAs and 26S, 18S and 5S rRNAs are coded by the plant mitochondrial genome. The protein coding genes contain group II introns. The organelle genome contains stretches of DNA sequences homologous to chloroplast DNA. It also contains actively transcribed DNA sequences having open reading frames. Plasmid like DNA molecules are found in mitochondria of some plants Cytoplasmic male sterility in plants, characterized by failure to produce functional pollen grains, is a maternally inherited trait. This phenomenon has been found in many species of plants and is conveniently used for hybrid plant production. The genetic determinants for cytoplasmic male sterility reside in the mitochondrial genome. Some species of plants exhibit more than one type of cytoplasmic male sterility. Several nuclear genes are known to control expression of cytoplasmic male sterility. Different cytoplasmic male sterility types are distinguished by their specific nuclear genes(rfs) which restore pollen fertility. Cytoplasmic male sterility types are also characterized by mitochondrial DNA restriction fragment length polymorphism patterns, variations in mitochondrial RNAs, differences in protein synthetic profiles, differences in sensitivity to fungal toxins and insecticides, presence of plasmid DNAs or RNAs and also presence of certain unique sequences in the genome. Recently nuclear male sterility systems based on (i) over expression of agrobacterialrol C gene and (ii) anther specific expression of an RNase gene have been developed in tobacco andBrassica by genetic engineering methods.  相似文献   

6.
7.
Gene translocations from the organelles to the nucleus are postulated by the endosymbiont hypothesis. We here report evidence for sequence insertions in the nuclear genomes of plants that are derived from noncoding regions of the mitochondrial genome. Fragments of mitochondrial group II introns are identified in the nuclear genomes of tobacco and a bean species. The duplicated intron sequences of 75–140 bp are derived from cis- and trans-splicing introns of genes encoding subunits 1 and 5 of the NADH dehydrogenase. The mitochondrial sequences are inserted in the vicinities of a lectin gene, different glucanase genes and a gene encoding a subunit of photosystem II. Sequence similarities between the nuclear and mitochondrial copies are in the range of 80 to 97%, suggesting recent transfer events that occurred in the basic glucanase genes before and in the lectin gene after the gene duplications in the evolution of the nuclear gene families. Overlapping regions of the same introns are in two instances also involved in intramitochondrial sequence duplications. Correspondence to: V. Knoop  相似文献   

8.
Ferritin, a protein widespread in nature, concentrates iron ∼1011–1012-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n= 7) is higher than in animals (n= 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling. Received: 25 July 1995 / Accepted: 3 October 1995  相似文献   

9.
The sequence of the apocytochrome b (cob) gene of Neurospora crassa has been determined. The structural gene is interrupted by two intervening sequences of approximately 1260 bp each. The polypeptide encoded by the exons shows extensive homology with the cob proteins of Aspergillus nidulans and Saccharomyces cerevisiae (79% and 60%, respectively). The two introns are, however, located at sites different from those of introns in the cob genes of A. nidulans and S. cerevisiae (which contain highly homologous introns at the same site within the gene). The introns share several short regions of sequence homology (10-12 bp long) with each other and with other fungal mitochondrial introns. Moreover, the second intron contains a 50 nucleotide long sequence that is highly homologous with sequences within every ribosomal intron of fungal mitochondria sequenced to date. The conserved sequences may allow the formation of a core secondary structure, which is nearly identical in many mitochondrial introns. The conserved secondary structure may be required for intron splicing. The second intron contains an open reading frame, continuous with the preceding exon, of approximately 290 codons. Two stretches of 10 amino acid residues, conserved in many introns, are present in the open reading frame.  相似文献   

10.
In the nuclear genes of Arabidopsis thaliana, the length of introns and exons was shown to vary depending on the number of introns. With increasing number of introns per gene, the proportion of introns composed of 80–100 nucleotides increases whereas the proportion of introns with 400-nucleotide length decreases. Similar changes in exon length in genes result in predominance of exons of 60–120-nucleotides in length.  相似文献   

11.
Two introns of the mitochondrial genome 777-3A of S. cerevisiae, bl4 in cob and al4 in coxl genes, contain ORFs that can be translated into two homologous proteins. We changed the UGA, AUA, and CUN codons of these ORFs to the universal genetic code, in order to study the functions of their translated products in E. coli and in yeast, by retargeting the nuclear encoded protein into mitochondria. The p27bl4 protein has been shown to be required for the splicing of both introns bl4 and al4. The homologous p28al4 protein is highly toxic to E. coli. It can specifically cleave double-stranded DNA at a sequence representing the junction of the two fused flanking exons. We present evidence that this system is a good model for studying the role of mitochondrial intron-encoded proteins in the rearrangement of genetic information at both the RNA (RNA splicing-bl4 maturase) and DNA levels (intron transposition-al4 transposase).  相似文献   

12.
Summary We have isolated a cytochrome c gene fromArabidopsis thaliana (cv. Columbia), which is the first cytochrome c gene to be cloned from a higher plant. Genomic DNA blot analysis indicates that there is only one copy of cytochrome c inArabidopsis. The gene consists of three exons separated by two introns. Gene features such as regulatory regions, codon usage, and conserved splicing-specific sequences are all present and typical of dicotyledonous plant nuclear genes. We have constructed phenograms and cladograms for cytochrome c amino acid sequences and histone H3, alcohol dehydrogenase, and actin DNA sequences. For both cytochrome c and histone H3,Arabidopsis clusters poorly with other higher plants. Instead, it clusters withNeurospora and/or the yeasts. We suggest that perhaps this observation should be considered when usingArabidopsis as a model system for higher plants.  相似文献   

13.
M Boutry  N H Chua 《The EMBO journal》1985,4(9):2159-2165
The beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia is encoded by two nuclear genes, atp2-1 and atp2-2, which are both expressed. The complete nucleotide sequence of atp2-1 has been determined. It contains eight introns ranging from 88 to 1453 bp. The last intron contains a putative insertion element (Inp), of 812 bp bordered by 35-bp inverted repeats which share an 11-bp homology with Agrobacterium tumefaciens T-DNA borders. Sequences homologous to Inp are present in multiple copies in the N. plumbaginifolia and the N. tabacum genome but not in more distant species. The atp2-1 encoded polypeptide is highly homologous to beta subunits from other ATP synthases but it contains an extension at the N terminus which is probably involved in mitochondrial targeting. A sequence homology between exon 4 of atp2-1 and exon 1 of the human ras genes suggests a common ancestral origin for these exons.  相似文献   

14.
15.
InNicotiana sylvestris, two cytoplasmic male sterile (CMS) mutants obtained by protoplast culture show abnormal developmental features of both vegetative and reproductive organs, and mitochondrial gene reorganization following homologous recombination between 65 bp repeated sequences. A mitochondrial region of 16.2 kb deleted from both CMS mutants was found to contain the last two exons of thenad7 gene coding for a subunit of the mitochondrial respiratory chain complex I, which is encoded in the nucleus in fungi and animals but was recently found to be encoded by the mitochondrial genome in wheat. Although theN. sylvestris nad7 gene shows strong homology with its wheat counterpart, it contains only three introns instead of four. Polymerase chain reaction (PCR) experiments indicated that the parental gene organization, including the completenad7 gene, is probably maintained at a substoichiometric level in the CMS mutants, but this proportion is too low to have a significant physiological role, as confirmed by expression studies showing the lack of detectable amounts of the NAD7 polypeptide. Consequently, absence of NAD7 is not lethal to plant cells but a deficiency of complex I could be involved in the abnormal CMS phenotype.  相似文献   

16.
Complex I, a key component of the mitochondrial electron transport system, is thought to have evolved from at least two separate enzyme systems prior to the evolution of mitochondria from a bacterial endosymbiont, but the genes for one of the enzyme systems are thought to have subsequently been transferred to the nuclear DNA. We demonstrated that the cellular slime mold Dictyostelium discoideum retains the ancestral characteristic of having mitochondria encoding at least one gene (80-kDa subunit) that is nuclear encoded in other eukaryotes. This is consistent with the cellular slime molds of the family Dictyosteliaceae having diverged from other eukaryotes at an early stage prior to the loss of the mitochondrial gene in the lineage giving rise to plants and animals. The D. discoideum mitochondrially encoded 80-kDa subunit of complex I exhibits a twofold-higher mutation rate compared with the homologous chromosomal gene in other eukaryotes, making it the most divergent eukaryotic form of this protein.Correspondence to: K.L. Williams  相似文献   

17.
Patrice Gonzalez  G  rard Barroso  Jacques Labar  re 《Gene》1998,220(1-2):45-53
The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527 aa (58 377 Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division.  相似文献   

18.
The PPX/PP4 Ser/Thr protein phosphatases belong to the type 2A phosphatase subfamily and are present in most eukaryotic organisms. We have previously isolated two closely related DNAs encoding PPX isoforms (PPX-1 and PPX-2) of Arabidopsis thaliana. Here we report the molecular cloning of the genes encoding these proteins. The genes PPX-1 and PPX-2 are composed of eight exons and seven introns located at equivalent positions related to the coding sequences. Whereas the intron-exon organization of the PPX genes is completely different from that of the PP2A-3/PP2A-4 A. thaliana family, specific intron-exon boundaries are conserved among PPX genes from distantly related organisms. Based on GUS expression, both PPX genes show the same spatial and temporal pattern of expression: they are expressed in all the organs and tissues analyzed, and from the earliest stage of development. When PPX proteins were localized to the root in semi-thin methacrylate sections by immunofluorescence, staining was predominantly confined to small organelles, shown to be plastids by co-localization of PPX and ferredoxin. Interestingly, only some ferredoxin-positive plastids were also PPX-positive, and PPX staining was consistently brighter in the epidermis. The localization was confirmed with immunogold and electron microscopy. Our results suggest that, despite its strong sequence conservation, PPX in plants functions differently than in animals.  相似文献   

19.
We previously observed that Antarctic fish genes contain intron sequences of high A+T content (60-70% average A+T) which are in stark contrast with adjacent protein coding-sequences. Here, we report that this disparity in intron/exon base composition is a common feature among teleosts. We analyzed 483 teleost genomic DNA sequences, containing 2583 introns, from 80 teleost genera that populate polar, temperate, or tropical habitats. Eighty-nine percent of teleost introns display an A+T content between 50-84% A+T with a mean of 60% A+T. In contrast, only 37% of teleost exons have an A+T content greater-than 50% with a mean of 48% A+T. A comparison to homologous mammalian genes showed a striking difference; in this case, introns and exons have similar base compositions, averaging 45-47% A+T. This indicates that most teleost genes exhibit a large difference in base composition between their introns and exons. There was no correlation of teleost intron A+T content to intron length or habitat temperature range. Thus, teleost intron sequences tend to show the common feature of being much higher in A+T content then neighboring exons.  相似文献   

20.
In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequencedArabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence ofChlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号