首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylase phosphatase isolated from rabbit skeletal muscle can be activated in several ways. Trypsin-Mn2+ treatment of the purified Mr = 70,000 complex or addition of Mn2+ alone to the isolated inactive catalytic subunit gives enzyme species that readily dephosphorylate phosphorylase a and the type 2 regulatory subunit of cAMP-dependent protein kinase as well as synthetic phosphopeptides corresponding to the phosphorylation sites of these proteins. In contrast, enzyme activated by phosphorylation of the regulatory subunit using factor FA (glycogen synthase kinase 3) and Mg2+-ATP and thought to be of physiological significance dephosphorylates the protein substrates but not the phosphopeptides. Likewise, the active catalytic subunit isolated following FA treatment could not act on the peptides unless Mn2+ ions (maximal effect at 250 microM) were added. Mg2+ and Ca2+ could not substitute for Mn2+. Such differences in substrate specificity are not seen with p-nitrophenyl phosphate which is dephosphorylated by all forms of the phosphatase. The results suggest that the primary sequence surrounding the phosphorylation site of the substrate is not all that is necessary for recognition by the FA-activated form of the enzyme. They are interpreted in terms of constraints within the enzyme that are relaxed following exposure to Mn2+ or by the additional determinants present in larger protein substrates.  相似文献   

2.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

3.
The cDNA encoding the 50-kDa subunit of Ca2+/calmodulin (CaM)-dependent protein kinase II from adult rat brain was cloned into the bacterial expression vector pK223-2 and produced in bacteria. Extensive modification of the cDNA was required to express detectable levels of enzyme. The activity of the bacterially expressed kinase was stringently dependent on Ca2+/CaM but did not exhibit cooperative activation kinetics characteristic of the forebrain enzyme and required 10-fold greater amounts of CaM for half-maximal activation. The bacterially expressed enzyme displayed an apparent Km for a synthetic peptide substrate similar to that of the forebrain enzyme (12 and 10 microM, respectively). Limited proteolysis maps of autophosphorylated peptides, and Western blot analysis demonstrated that the bacterially expressed enzyme was structurally and immunologically indistinguishable from the 50-kDa subunit of the rat forebrain holoenzyme. The bacterially expressed enzyme became Ca2+/CaM-independent after Ca2+/CaM-dependent autophosphorylation in a fashion identical to the forebrain enzyme.  相似文献   

4.
Transverse tubule membranes isolated from rabbit skeletal muscle have high levels of a Ca2+- or Mg2+-ATPase with Km values for Ca-ATP or Mg-ATP in the 0.2 mM range, but do not display detectable levels of ATPase activity activated by micromolar [Ca2+]. The transverse tubule enzyme is less temperature or pH dependent than the Ca2+-ATPase of sarcoplasmic reticulum and hydrolyzes equally well ATP, ITP, UTP, CTP, and GTP. Of several ionic, non-ionic, and zwitterionic detergents tested, only lysolecithin solubilizes the transverse tubule membrane while preserving ATPase activity. After extraction of about 50% of the transverse tubule proteins by solubilization with lysolecithin most of the ATPase activity remains membrane bound, indicating that the Ca2+- or Mg2+-ATPase is an intrinsic membrane enzyme. A second extraction of the remaining transverse tubule proteins with lysolecithin results in solubilization and partial purification of the enzyme. Sedimentation of the Ca2+- or Mg2+-ATPase, partially purified by lysolecithin solubilization, through a continuous sucrose gradient devoid of detergent leads to additional purification, with an overall 3- to 5-fold purification factor. The purified enzyme preparation contains two main protein components of molecular weights 107,000 and 30,000. Cholesterol, which is highly enriched in the transverse tubule membrane, copurifies with the enzyme. Transverse tubule membrane vesicles also display ATP-dependent calcium transport which is not affected by phosphate or oxalate. The possibility that the Ca2+- or Mg2+-ATPase is the enzyme responsible for the Ca2+ transport displayed by isolated transverse tubules is discussed.  相似文献   

5.
Limited labeling of amino groups with fluorescamine in fragmented sarcoplasmic reticulum vesicles inhibits Ca2+-ATPase activity and Ca2+ transport. Under the labeling conditions used, 80% of the label reacts with phosphatidylethanolamine and 20% with the Ca2+-ATPase polypeptide. This degree of labeling does not result in vesicular disruption or in loss of vesicular proteins and does not increase the membrane permeability to Ca2+. Fluorescamine labeling of a purified Ca2+-ATPase devoid of aminophospholipids also inhibits Ca2+-ATPase activity, suggesting that labeling of lysine residues of the enzyme polypeptide is responsible for the inhibition of Ca2+-ATPase activity in sarcoplasmic reticulum. Fluorescamine labeling interferes with phosphoenzyme formation and decomposition in both the native vesicles and the purified enzyme; addition of ATP during labeling, and with less effectiveness ADP or AMP, protects both partial reaction steps. Addition of a nonhydrolyzable ATP analog protects phosphoenzyme formation but not decomposition. The inhibition of Ca2+ transport but not of Ca2+-ATPase occurs in sarcoplasmic reticulum vesicles labeled in the presence of ATP, indicating that the transport reaction is uncoupled from the Ca2+-ATPase reaction. The inhibition of Ca2+ transport but not of Ca2+-ATPase activity is also found in sarcoplasmic reticulum vesicles in which only phosphatidylethanolamine has reacted with fluorescamine. Furthermore, the extent of labeling of phosphatidylethanolamine is correlated with the inhibition of Ca2+ transport rates. The inhibition of Ca2+ transport is a reflection of the inhibition of Ca2+ translocation and is not due to an increase in Ca2+ efflux. We propose that labeling of phosphatidylethanolamine perturbs the lipid environment around the enzyme, producing a specific defect in the Ca2+ translocation reaction.  相似文献   

6.
Gao ZH  Zhong G 《Gene》1999,228(1-2):51-59
Calcineurin B (CnB) and calmodulin (CaM) are two structurally similar but functionally distinct 'EF-hand' Ca2+-binding proteins. CnB is the regulatory subunit of the CaM-stimulated protein phosphatase, calcineurin. CaM is a unique multifunctional protein that interacts with and modulates the activity of many target proteins. CnB and CaM are both required for the full activation of the phosphatase activity of calcineurin and are not interchangeable. The two proteins recognize distinct binding sites on calcineurin A subunit (CnA) and perform different functions. Phage-displayed peptide libraries (pIII and pVIII libraries) were screened with CnB and CaM to isolate peptides that could then be compared to determine if there were binding preferences of the two proteins. The Ca2+-dependent binding of phage-displayed peptides to CnB and CaM is specifically blocked by synthetic peptides derived from the CnB-binding domain of CnA and the CaM-binding domain of myosin light chain kinase respectively. Both CnB- and CaM-binding peptides have a high content of tryptophan and leucine, but CnB-binding peptides are more hydrophobic than CaM-binding peptides. CnB-binding peptides are negatively charged with clusters of hydrophobic residues rich in phenylalanine, whereas the CaM-binding peptides are positively charged and often contain an Arg/Lys-Trp motif. The binding preferences identified with peptide libraries are consistent with the features of the CnB-binding domains of all CnA isoforms and the CaM-binding domains of CaM targets.  相似文献   

7.
Acetylcholinesterase was purified from the soluble supernatant of monkey (Macaca radiata) brain basal ganglia by a three-step affinity purification procedure. The purified enzyme showed two major protein bands corresponding to molecular weights of approximately 65 kDa and approximately 58 kDa which could be labelled by [3H]diisopropylfluorophosphate. When the purified enzyme was subjected to limited trypsin digestion followed by gel filtration on Sephadex G-75 or Sephadex G-25 column, a peptide fragment of molecular weight approximately 300 Da having a weak acetylthiocholine hydrolysing activity was isolated. The amino acid sequence analysis of this peptide showed a sequence of Gly-Pro-Ser. When the [3H]DFP labelled enzyme was subjected to limited trypsin digestion and Sephadex G-75 column chromatography, a labelled peptide corresponding to approximately 430 Da was isolated. The kinetics, inhibition characteristics and binding characteristics to lectins of this peptide were compared with the parent enzyme. A synthetic peptide of sequence Gly-Pro-Ser was also found to exhibit acetylthiocholine hydrolysing activity. The kinetics and inhibition characteristics of the synthetic peptide were similar to those of the peptide derived from the purified acetylcholinesterase, except that the synthetic peptide was more specific towards acetylthiocholine than butyrylthiocholine. The specific activity (units/mg) of the synthetic peptide was about 123700 times less than that of the purified AChE.  相似文献   

8.
Four Ca2+-sensitive proteins of respective subunit molecular weights 67 kDa, 37 kDa, 36 kDa and 32 kDa were purified from pig brain and spinal cord. Associated to the particulate fraction at millimolar concentrations of free Ca2+, they were solubilized using an EGTA-containing buffer and purified by a selective Ca2+-dependent precipitation. The 36 kDa protein is present in the tissues in a tetrameric form of (2 X 36 kDa + 2 X 13 kDa) and in a monomeric form. These proteins with the 37 kDa protein share the functional properties of the two well-known Ca2+-binding proteins, named calpactin I and calpactin II; they were able to interact with F-actin, brain spectrin (fodrin) and phosphatidylserine-liposomes in a Ca2+-dependent manner. The 67 kDa protein depolymerizes the actin filament in presence of Ca2+, it also binds to tubulin and to the neurofilament subunit NF-70, but not to brain spectrin. The 32 kDa protein does not share any association with F-actin and brain spectrin.  相似文献   

9.
Mn2+ (50 microM) satisfies the requirement for activity of the purified Ca2+-dependent neutral proteinase from human erythrocytes. Unlike the activation by Ca2+ [E. Melloni et al. (1984) Biochem. Int. 8, 477-489], the effect of Mn2+ is fully reversible and does not involve autodigestion of the native 80-kDa catalytic subunit. However, the native dimeric proenzyme (procalpain), which contains both the 80-kDa subunit and a smaller 30-kDa subunit, is not activated by Mn2+ alone but also requires the presence of micromolar concentrations of Ca2+. Under these conditions, 40% of the maximum activity is expressed without dissociation of the 80- and 30-kDa subunits. Mn2+, but not micromolar Ca2+, can also partially satisfy the metal requirement of the native 80-kDa subunit isolated after dissociation of the heterodimer. This activity is further enhanced by the addition of 5 microM Ca2+, which is ineffective in the absence of Mn2+. After procalpain is converted to active calpain by incubation with Ca2+ and substrate [S. Pontremoli et al. (1984) Biochem. Biophys. Res. Commun. 123, 331-337] full activity is observed with 5 microM Mn2+, which now substitutes completely for Ca2+. Activation of procalpain by Mn2+ represents a new mechanism for modulation of the Ca2+-dependent proteinase activity.  相似文献   

10.
We tested the effects of calmodulin, two types of calmodulin antagonists, and various phospholipids on the phospholipase A2 activities of intact platelets, platelet membranes, and partially purified enzyme preparations. Trifluoperazine, chlorpromazine (phenothiazines) and N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide (W-7), at concentrations which antagonize the effects of calmodulin, significantly inhibited thrombin- and Ca2+ ionophore-induced production of arachidonic acid metabolites by suspensions of rabbit platelets and Ca2+-induced arachidonic acid release from phospholipids of membrane fractions, but not phospholipase A2 activity in purified enzyme preparations. The addition of acidic phospholipids, but not calmodulin, stimulated phospholipase A2 activity in purified enzyme preparations while decreasing its Km for Ca2+. The dose-response and kinetics of inhibition by calmodulin antagonists of acidic phospholipid-activated phospholipase A2 activity in purified preparations were similar to those of Ca2+-induced arachidonic acid release from membrane fractions. Calmodulin antagonists were also found to inhibit Ca2+ binding to acidic phospholipids in a similar dose-dependent manner. Our results suggest that the platelet phospholipase A2 is the key enzyme involved in arachidonic acid mobilization in platelets and is regulated by acidic phospholipids in a Ca2+-dependent manner and that calmodulin antagonists inhibit phospholipase A2 activity via an action on acidic phospholipids.  相似文献   

11.
The effects of divalent cations, especially Ca2+ and Mg2+, on the proton-translocating inorganic pyrophosphatase purified from mung bean vacuoles were investigated to compare the enzyme with other pyrophosphatases. The pyrophosphatase was irreversibly inactivated by incubation in the absence of Mg2+. The removal of Mg2+ from the enzyme increased susceptibility to proteolysis by trypsin. Vacuolar pyrophosphatase required free Mg2+ as an essential cofactor (K0.5 = 42 microM). Binding of Mg2+ stabilizes and activates the enzyme. The formation of MgPPi is also an important role of magnesium ion. Apparent Km of the enzyme for MgPPi was about 130 microM. CaCl2 decreased the enzyme activity to less than 60% at 40 microM, and the inhibition was reversed by EGTA. Pyrophosphatase activity was measured under different conditions of Mg2+ and Ca2+ concentrations at pH 7.2. The rate of inhibition depended on the concentration of CaPPi, and the approximate Ki for CaPPi was 17 microM. A high concentration of free Ca2+ did not inhibit the enzyme at a low concentration of CaPPi. It appears that for Ca2+, at least, the inhibitory form is the Ca2(+)-PPi complex. Cd2+, Co2+ and Cu2+ also inhibited the enzyme. The antibody against the vacuolar pyrophosphatase did not react with rat liver mitochondrial or yeast cytosolic pyrophosphatases. Also, the antibody to the yeast enzyme did not react with the vacuolar enzyme. Thus, the catalytic properties of the vacuolar pyrophosphatase, such as Mg2+ requirement and sensitivity to Ca2+, are common to the other pyrophosphatases, but the vacuolar enzyme differs from them in subunit mass and immunoreactivity.  相似文献   

12.
The N-terminal heparin/fibrin binding domain of human plasma fibronectin (pFN) contains a cryptic proteinase. The enzyme could be generated and activated in the presence of Ca2+ from the purified 70 kDa pFN fragment produced by cathepsin D digestion of pFN. In this work we cloned and expressed the serine proteinase, designated fibronectinase (Fnase), in E. coli. The recombinant pFN protein fragment was isolated from inclusion bodies, subjected to folding and autocatalytic degradation in the presence of Ca2+, and yielded an active enzyme capable of digesting fibronectin. Cleavage of pFN and the synthetic peptides Ac-I-E-G-K-pNA and Bz-I-E-G-R-pNA demonstrated identical specificity of the recombinant and the isolated fibronectinase. Further investigations of the substrate specificity revealed for the first time the muscle proteins actin and myosin as being substrates of fibronectinase. The enzyme can be inhibited by alpha1-proteinase inhibitor. In the context of induced cathepsin D release, e. g. from granulocytes under inflammatory conditions, these results indicate an increase in specific proteolytic potential against muscular proteins in dystrophic diseases by the release of cryptic fibronectinase.  相似文献   

13.
Bordetella pertussis, the etiologic agent of whooping cough, produces a calmodulin-sensitive adenylate cyclase which elevates intracellular cAMP in a variety of eucaryotic cells. Exogenous calmodulin added to the partially purified adenylate cyclase has been shown to inhibit invasion of animal cells by this enzyme (Shattuck, R. L., and Storm, D. R. (1985) Biochemistry 24, 6323-6328). In this study, several properties of the calmodulin-sensitive adenylate cyclase are shown to be influenced by Ca2+ in the absence of calmodulin. The presence or absence of Ca2+ during QAE-Sephadex ion exchange chromatography produced two distinct chromatographic patterns of adenylate cyclase activity. Two different forms of the enzyme (Pk1 and Pk2EGTA) were isolated by this procedure. Pk1 adenylate cyclase readily elevated intracellular cAMP levels in mouse neuroblastoma cells (N1E-115) while Pk2EGTA adenylate cyclase had no effect on cAMP levels in these cells. Gel exclusion chromatography of Pk1 adenylate cyclase gave apparent Stokes radii (RS) of 43.5 A (+/- 1.3) in the presence of 2 mM CaCl2 and 33.8 A (+/- 0.94) in the presence of 2 mM EGTA [( ethylenebis (oxyethylenenitrilo)]tetraacetic acid). These Stokes radii are consistent with molecular weights of 104,000 (+/- 6,400) and 61,000 (+/- 3,600), respectively. Pk2EGTA adenylate cyclase had an apparent RS of 33.0 (+/- 1.2) (Mr = 60,600 (+/- 2,800] in the presence of Ca2+ or excess EGTA. At 60 degrees C, Pk1 adenylate cyclase exhibited a Ca2+-dependent heat stability with a half-life for loss of enzyme activity of 10.3 min in 5 mM CaCl2 and a half-life of 2.8 min in the presence of 0.1 microM CaCl2. The stability of Pk2EGTA adenylate cyclase was not affected by changes in free Ca2+. The adenylate cyclase preparations described above were submitted to sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, and enzyme activity was recovered from gel slices by extraction with detergent containing buffers. The catalytic subunit isolated from SDS-polyacrylamide gels was activated 7-fold in the presence of Ca2+ with maximum activity observed at 1 microM free Ca2+. With both preparations, the apparent molecular weight of the catalytic subunit on SDS gels was 51,000 in the presence of 2 mM CaCl2 and 45,000 in the presence of 2 mM EGTA. The catalytic subunit of the enzyme was purified to apparent homogeneity by preparative SDS-polyacrylamide gel electrophoresis and resubmitted to SDS gel electrophoresis in the presence or absence of free Ca2+. The purified catalytic subunit also exhibited a Ca2+-dependent shift in its mobility on SDS gels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A Ca2+-activated neutral protease was purified to homogeneity from an aquatic Phycomycete fungus, Allomyces arbuscula. It requires millimolar concentrations of Ca2+ for activation (1.8 to 2 mM for 50% activation). Sr2+ can replace Ca2+ but at higher concentrations (4 mM for 50% activation). The enzyme is a dimer of 40-kilodalton subunits and contains six cysteine residues, three of which are revealed only after the addition of micromolar concentrations of Ca2+; the other three are free. Enzyme activity is strongly inhibited by SH-group inhibitors and some trypsin inhibitors (leupeptin and alpha-N-tosyl-L-lysine chloromethyl ketone). The enzyme lacks general trypsinlike specificity, since substrates containing tryptic cleavage sites are not cleaved nor is enzyme activity inhibited by other trypsin inhibitors. The enzyme has many functional similarities to the extensively characterized mammalian and avian Ca2+-activated neutral proteases but differs in its substrate specificity, inhibition by alpha-N-tosyl-L-phenylalanine chloromethyl ketone, and subunit structure. It is, nevertheless, presumed that this enzyme has a similar high order of specificity and is involved in the regulation of a specific growth function.  相似文献   

15.
A comparative study was made of the metal ion requirement of rat liver mitochondrial phospholipase A2 in purified and membrane-associated forms. Membrane-bound enzyme was assayed using either exogenous or endogenous phosphatidylethanolamine. Although several divalent metal ions caused increased activity of the membrane-associated enzyme, only Ca2+ and Sr2+ activated the purified phospholipase A2. The activity in the presence of Sr2+ amounted to about 25% of that found with Ca2+. When the Ca2+ concentration was varied two activity plateaus were observed. The corresponding dissociation constants varied from 6 to 20 microM Ca2+ and from 1.4 to 12 mM Ca2+ for the high- and low-affinity binding sites, respectively, depending on the assay conditions and whether purified or membrane-bound enzyme was used. A kSr2+ of 60 microM was found for the high-affinity binding site. The effect of calmodulin and its antagonist trifluoperazine was also investigated using purified and membrane-associated enzyme. When membrane-bound enzyme was measured with exogenous phosphatidylethanolamine, small stimulations by calmodulin were found. However, these were not believed to indicate a specific role for calmodulin in the Ca2+ dependency of the phospholipase A2, since trifluoperazine did not lower the activity of the membrane-bound enzyme to levels below those found in the presence of Ca2+ alone. Membrane-bound enzyme in its action toward endogenous phosphatidylethanolamine was neither stimulated by calmodulin nor inhibited by trifluoperazine. Purified enzyme was also not stimulated by calmodulin, while trifluoperazine caused small stimulations, presumably due to interactions at the substrate level. These results indicate that calmodulin involvement in phospholipase A2 activation should not be generalized.  相似文献   

16.
Protein kinase [EC 2.7.1.37] of human erythrocyte membranes was solubilized with 0.5 M NaCl in 5 mM phosphate buffer, pH 6.7 at 4 degrees C and purified on a CM-Sephadex C-50 column, followed by affinity chromatography on a histone-Sepharose 4B column. The purified protein kinase gave a single band (molecular weight; 41,000) on examination by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 8.0 and a millimolar range of concentration of Mg2+ was required for its maximum activity. Histone and protamine were well phosphorylated by the protein kinase but casein and phosvitin were poor phosphate acceptors for the enzyme. The enzymic activity was not stimulated by cyclic AMP (cAMP). A cAMP-finding protein from human erythrocyte membranes inhibited the activity of the protein kinase, but the activity was restored with cAMP. A heat stable protein inhibitor from rabbit skeletal muscle also inhibited this enzyme. From these observations, this protein kinase seemed to be a catalytic subunit of the membrane bound cAMP-dependent protein kinase. This enzyme was strongly inhibited with Ca2+ in the presence of 1 mM MgCl2. Various sulfhydryl reagents and polyamines also had inhibitory activity on the protein kinase. Natural substrates of the enzyme were investigated using heat treated membranes and 0.5 M NaCl extracted membrane residues. Band 4.1, 4.2, and 4.5 proteins were phosphorylated but band 2 (spectrin) and band 3 proteins were poor substrates for this protein kinase.  相似文献   

17.
A Ca2(+)-pumping ATPase has been characterized in rat hepatocyte plasma membranes. The enzyme has high Ca2+ affinity, and properties typical of a P-type ion pump. At variance with the Ca2+ pumps of other eukaryotic plasma membranes, it is not stimulated by calmodulin. The steady state concentration of the phosphoenzyme formed in the presence of ATP is increased by La3+. The enzyme cross-reacts with a monoclonal antibody (mAb-5F10) raised against the human erythrocyte Ca2+ pump. The enzyme has been purified using a mAb-5F10 antibody affinity column. CNBr digestion of the isolated protein has yielded two peptides which have been sequenced. One of them matches perfectly a sequence contained in the erythrocyte Ca2+ pump, the other is very homologous to another domain in the erythrocyte pump. In spite of the absence of calmodulin stimulation, 125I-calmodulin overlay experiments on the purified liver ATPase under denaturing conditions have revealed that the enzyme binds calmodulin even more strongly than the erythrocyte pump. Immunocytochemical experiments on liver slices using the mAb-5F10 antibody have shown that the enzyme is located predominantly in the blood sinusoidal domain of the hepatocyte plasma membrane.  相似文献   

18.
We have purified a Ca2+ dependent ribonuclease from the oocytes of Xenopus leavis. Two properties of this ribonuclease set it apart from other known nucleases. First, Ca2+ was required for ribonuclease activity, and Mg2+ would not substitute. Second, the enzyme specifically degraded RNA and digestion of double or single stranded DNA was not observed. Ca2+ dependent ribonuclease activity of the purified 36-kDa protein was directly observed after renaturation of the protein following electrophoresis in an SDS-Laemmli gel. In addition, the enzyme was shown to have endoribonuclease activity at numerous sites. The Ca2+ dependence suggests that the ribonuclease activity may be modulated by changes in the level of intracellular Ca2+ and thereby provide a direct link to signal transduction systems.  相似文献   

19.
A high-salt soluble form of acetylcholinesterase (AChE) was purified from monkey (Macaca radiata) whole diaphragm by a two step affinity chromatographic procedure using m-aminophenyl trimethylammoniumchloride hydrochloride-Sepharose and procainamide-Sepharose columns. The purified enzyme showed three major protein bands at 80 kDa, 78 kDa and 60 kDa on SDS-gel electrophoresis. [3H]Diisopropyl fluorophosphate ([3H]DFP) labeled enzyme also gave three radioactive peaks corresponding to these three bands. The purified enzyme pretreated with dithiothreitol and subjected to limited trypsin digestion gave a peptide fragment of molecular weight 300 Da showing weak acetylthiocholine hydrolyzing activity as identified by Sephadex G-25 gel filtration. Sequence analysis showed that the active peptide fragment was a tripeptide with the sequence Ala-Gly-Ser. When the purified AChE was labeled with [3H]DFP, digested with trypsin and subjected to Sephadex G-25 chromatography, a radioactive peak that would correspond to the tripeptide fragment was seen. The kinetics, inhibition characteristics and binding characteristics to lectins of the active peptide fragment was compared with the parent enzyme.A synthetic peptide of sequence Ala-Gly-Ser was also found to exhibit acetylthiocholine hydrolyzing activity. The kinetics and inhibition characteristics of the synthetic peptide was similar to those of the peptide derived from the purified enzyme, except that the synthetic peptide was more specific towards acetylthiocholine than butyrylthiocholine. The specific activity (units/mg) of the synthetic peptide was about 29480 times less than that of the purified AChE.Abbreviations AChE Acetylcholinesterase - BW284C51 1,5-bis(4-allyl dimethylammonium phenyl) pentan 3-one-dibromide - DFP Diisobropyl fluorophosphate - TIPP Tetra isopropyl pyrophosphoramide - TPCK N-Tosyl-L-phenylalanylchloromethyl ketone - MAP m-Aminophenyl trimethylammonium chloride - RCA1 Ricinus communis agglutinin 120 - TEAB Tetraethylammonium bromide - DTT Dithiothreitol  相似文献   

20.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号