首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Sandler  Paul Szauter 《Genetics》1978,90(4):699-712
Crossing over was measured on the normally achiasmate fourth chromosome in females homozygous for one of our different recombination-defective meiotic mutants. Under the influence of those meiotic mutants that affect the major chromosomes by altering the spatial distribution of exchanges, meiotic fourth-chromosome recombinants were recovered irrespective of whether or not the meiotic mutant decreases crossing over on the other chromosomes. No crossing over, on the other hand, was detected on chromosome 4 in either wild type or in the presence of a meiotic mutant that decreases the frequency, but does not affect the spatial distribution, of exchange on the major chromosomes. It is concluded from these observations that (a) in wild type there are regional constraints on exchange that can be attenuated or eliminated by the defects caused by recombination-defective meiotic mutants; [b] these very constraints account for the absence of recombination on chromosome 4 in wild type; and [c] despite being normally achiasmate, chromosome 4 responds to recombination-defective meiotic mutants in the same way as do the other chromosomes.  相似文献   

2.
Ring Chromosomes and rDNA Magnification in Drosophila   总被引:4,自引:0,他引:4       下载免费PDF全文
Tartof showed that ribosomal gene magnification in Drosophila was inhibited in a ring X chromosome. The present studies extend this observation by showing that ring X chromosomes are lost meiotically in male Drosophila undergoing ribosomal gene magnification as evidenced by the recovery of a lower number of ring-bearing progeny under magnifying conditions compared with nonmagnifying conditions. Associated with ring chromosome loss is a highly significant increase in the number of double-sized dicentric ring chromosomes in meiotic cells from magnifying males. These observations explain the failure of ring X chromosomes to magnify and imply that magnification in rod chromosomes occurs via a mechanism of unequal sister chromatid exchange. Our results support the hypothesis that the primary event of magnification is a sister chromatid exchange in the rDNA, that the frequency of sister strand exchanges is increased in magnifying flies, that a significant number of exchanges in magnifying flies occurs meiotically and that some of the exchanges are nonreciprocal. We have also found that autosomal mutations can affect both the frequency of abnormal ring structures and the ability of ring X chromosomes to magnify.  相似文献   

3.
Carpenter AT  Baker BS 《Genetics》1982,101(1):81-89
The effects of eight recombination-defective meiotic mutants on crossing over within the X heterochromatin were examined. Since none permit substantial frequencies of exchange within heterochromatin although six lessen or abolish constraints on the location of exchanges within euchromatin, the systems that prohibit exchange within heterochromatin and that govern where exchanges will occur in euchromatin are under separate genetic control.—A minor component of the effects of mei-218 is the production of nonhomologous exchanges; of mei-9 is the recovery of deleted chromatids; and of mei-41 is the recovery of deleted chromatids and/or a low frequency of heterochromatic exchanges.  相似文献   

4.
Evgen'ev MB 《Genetics》1976,83(2):355-360
Spontaneous crossing over was studied by means of combined cytological and genetic methods in F1 Drosophila virilis x D. texana females (series I) and in D. virilis females carrying a D. texana fifth chromosome in heterozygous condition (series II). The main criterion utilized to distinguish the oogonial crossovers from the meiotic ones is the identity of cytological positions of genetic exchange in crossovers constituting a cluster. Five clusters of crossovers with identical positions of exchange were found in the first series of experiments. In the second series of experiments not a single cluster of crossovers resulting from oogonial crossing over was found.  相似文献   

5.
During meiosis, sister chromatid cohesion is required for normal levels of homologous recombination, although how cohesion regulates exchange is not understood. Null mutations in orientation disruptor (ord) ablate arm and centromeric cohesion during Drosophila meiosis and severely reduce homologous crossovers in mutant oocytes. We show that ORD protein localizes along oocyte chromosomes during the stages in which recombination occurs. Although synaptonemal complex (SC) components initially associate with synapsed homologues in ord mutants, their localization is severely disrupted during pachytene progression, and normal tripartite SC is not visible by electron microscopy. In ord germaria, meiotic double strand breaks appear and disappear with frequency and timing indistinguishable from wild type. However, Ring chromosome recovery is dramatically reduced in ord oocytes compared with wild type, which is consistent with the model that defects in meiotic cohesion remove the constraints that normally limit recombination between sisters. We conclude that ORD activity suppresses sister chromatid exchange and stimulates inter-homologue crossovers, thereby promoting homologue bias during meiotic recombination in Drosophila.  相似文献   

6.
M. C. Zetka  A. M. Rose 《Genetics》1995,141(4):1339-1349
Meiotic crossovers are not randomly distributed along the chromosome. In Caenorhabditis elegans the central portions of the autosomes have relatively few crossovers compared to the flanking regions. We have measured the frequency of crossing over for several intervals across chromosome I in strains mutant for rec-1. The chromosome is ~50 map units in both wild-type and rec-1 homozygotes, however, the distribution of exchanges is very different in rec-1. Map distances expand across the gene cluster and contract near the right end of the chromosome, resulting in a genetic map more consistent with the physical map. Mutations in two other genes, him-6 and him-14, also disrupted the distribution of exchanges. Unlike rec-1, individuals homozygous for him-6 and him-14 had an overall reduction in the amount of crossing over accompanied by a high frequency of nondisjunction and reduced egg hatching. In rec-1; him-6 and rec-1; him-14 homozygotes the frequency of crossing over was characteristic of the Him mutant phenotype, whereas the distribution of the reduced number of exchanges was characteristic of the Rec-1 pattern. It appears that these gene products play a role in establishing the meiotic pattern of exchange events.  相似文献   

7.
The nucleolus organizers on the X and Y chromosomes of Drosophila melanogaster are the sites of 200-250 tandemly repeated genes for ribosomal RNA. As there is no meiotic crossing over in male Drosophila, the X and Y chromosomal rDNA arrays should be evolutionarily independent, and therefore divergent. The rRNAs produced by X and Y are, however, very similar, if not identical. Molecular, genetic and cytological analyses of a series of X chromosome rDNA deletions (bb alleles) showed that they arose by unequal exchange through the nucleolus organizers of the X and Y chromosomes. Three separate exchange events generated compound X·Y L chromosomes carrying mainly Y-specific rDNA. This led to the hypothesis that X-Y exchange is responsible for the coevolution of X and Y chromosomal rDNA. We have tested and confirmed several of the predictions of this hypothesis: First, X· YL chromosomes must be found in wild populations. We have found such a chromosome. Second, the X·YL chromosome must lose the YL arm, and/or be at a selective disadvantage to normal X+ chromosomes, to retain the normal morphology of the X chromosome. Six of seventeen sublines founded from homozygous X·YLbb stocks have become fixed for chromosomes with spontaneous loss of part or all of the appended YL. Third, rDNA variants on the X chromosome are expected to be clustered within the X+ nucleolus organizer, recently donated (" Y") forms being proximal, and X-specific forms distal. We present evidence for clustering of rRNA genes containing Type 1 insertions. Consequently, X-Y exchange is probably responsible for the coevolution of X and Y rDNA arrays.  相似文献   

8.
Crossovers mediate the accurate segregation of homologous chromosomes during meiosis. The widely conserved pch2 gene of Drosophila melanogaster is required for a pachytene checkpoint that delays prophase progression when genes necessary for DSB repair and crossover formation are defective. However, the underlying process that the pachytene checkpoint is monitoring remains unclear. Here we have investigated the relationship between chromosome structure and the pachytene checkpoint and show that disruptions in chromosome axis formation, caused by mutations in axis components or chromosome rearrangements, trigger a pch2-dependent delay. Accordingly, the global increase in crossovers caused by chromosome rearrangements, known as the “interchromosomal effect of crossing over,” is also dependent on pch2. Checkpoint-mediated effects require the histone deacetylase Sir2, revealing a conserved functional connection between PCH2 and Sir2 in monitoring meiotic events from Saccharomyces cerevisiae to a metazoan. These findings suggest a model in which the pachytene checkpoint monitors the structure of chromosome axes and may function to promote an optimal number of crossovers.  相似文献   

9.
Joyce EF  McKim KS 《Genetics》2009,181(1):39-51
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisions. We show here that mutations in Drosophila genes required to process DSBs into crossovers delay two important steps in meiotic progression: a chromatin-remodeling process associated with DSB formation and the final steps of oocyte selection. Consistent with the hypothesis that a checkpoint has been activated, the delays in meiotic progression are suppressed by a mutation in the Drosophila homolog of pch2. The PCH2-dependent delays also require proteins thought to regulate the number and distribution of crossovers, suggesting that this checkpoint monitors events leading to crossover formation. Surprisingly, two lines of evidence suggest that the PCH2-dependent checkpoint does not reflect the accumulation of unprocessed recombination intermediates: the delays in meiotic progression do not depend on DSB formation or on mei-41, the Drosophila ATR homolog, which is required for the checkpoint response to unrepaired DSBs. We propose that the sites and/or conditions required to promote crossovers are established independently of DSB formation early in meiotic prophase. Furthermore, the PCH2-dependent checkpoint is activated by these events and pachytene progression is delayed until the DSB repair complexes required to generate crossovers are assembled. Interestingly, PCH2-dependent delays in prophase may allow additional crossovers to form.  相似文献   

10.
Slatko BE 《Genetics》1978,90(2):257-276
The T-007 second chromosome line of Drosophila melanogaster, previously shown to contain genetic elements responsible for male recombination induction, appears to affect several parameters of recombination in females. In T-007 heterozygous females, the distribution of recombination (but not the total frequency) is changed from that observed in control females; relative increases are observed in the more proximal regions of the second, third and X chromosomes, while relative decreases are observed more distally. These changes are paralleled by altered coefficient of coincidence values and in an increased nondisjunction frequency of second chromosomes. The distribution of recombination in females is strikingly similar to that observed in males as measured along the second and third chromosomes, and the frequency of nondisjunction of the X and Y chromosomes is increased in T-007 heterozygous males. Based upon these results and responses to the effect of structurally rearranged heterologues (the "interchromosomal effect"), it is suggested that T-007 affects the preconditions for meiotic exchange in females. It is not yet known if elements responsible for these effects are the same elements responsible for the numerous other traits associated with the T-007 second chromosome.  相似文献   

11.
In females of Drosophila melanogaster, compound autosomes enter the repulsion phase of meiosis uncommitted to a particular segregation pattern because their centromeres are not restricted to a bivalent pairing complex as a consequence of crossing over. Their distribution at anaphase, therefore, is determined by some meiotic property other than exchange pairing, a property that for many years has been associated with the concept of nonhomologous pairing. In the absence of heterologous rearrangements or a free Y chromosome, C(3L) and C(3R) are usually recovered in separate gametes, that is as products of meiotic segregation. Nevertheless, there is a regular, albeit infrequent, recovery of reciprocal meiotic products (the nonsegregational products) that are disomic and nullosomic for compound thirds. The frequency of these exceptions, which is normally between 0.5 and 5.0%, differs for the various strains examined, but remains constant for any given strain. Since previous studies have not uncovered a cause for this base level of nonsegregation, it has been referred to as the spontaneous frequency. In this study, crosses between males and females whose X chromosomes, as well as compound autosomes, are differentially marked reveal a highly significant positive correlation between the frequency of compound-autosome nonsegregation and the frequency of X-chromosome nondisjunction. However, an inverse correlation is found when the frequency of nondisjunction is related to the frequency of crossing over in the proximal region of the X chromosome. These findings have been examined with reference to the distributive pairing and the chromocentral models and interpreted as demonstrating (1) that nonsegregational meiotic events arise primarily as a result of nonhomologous interactions, (2) that forces responsible for the segregation of nonhomologous chromosomes are properties of the chromocentral region, and (3) that these forces come into expression after the exchange processes are complete.  相似文献   

12.
Deleterious mutations inevitably emerge in any evolutionary process and are speculated to decisively influence the structure of the genome. Meiosis, which is thought to play a major role in handling mutations on the population level, recombines chromosomes via non-randomly distributed hot spots for meiotic recombination. In many genomes, various types of genetic elements are distributed in patterns that are currently not well understood. In particular, important (essential) genes are arranged in clusters, which often cannot be explained by a functional relationship of the involved genes. Here we show by computer simulation that essential gene (EG) clustering provides a fitness benefit in handling deleterious mutations in sexual populations with variable levels of inbreeding and outbreeding. We find that recessive lethal mutations enforce a selective pressure towards clustered genome architectures. Our simulations correctly predict (i) the evolution of non-random distributions of meiotic crossovers, (ii) the genome-wide anti-correlation of meiotic crossovers and EG clustering, (iii) the evolution of EG enrichment in pericentromeric regions and (iv) the associated absence of meiotic crossovers (cold centromeres). Our results furthermore predict optimal crossover rates for yeast chromosomes, which match the experimentally determined rates. Using a Saccharomyces cerevisiae conditional mutator strain, we show that haploid lethal phenotypes result predominantly from mutation of single loci and generally do not impair mating, which leads to an accumulation of mutational load following meiosis and mating. We hypothesize that purging of deleterious mutations in essential genes constitutes an important factor driving meiotic crossover. Therefore, the increased robustness of populations to deleterious mutations, which arises from clustered genome architectures, may provide a significant selective force shaping crossover distribution. Our analysis reveals a new aspect of the evolution of genome architectures that complements insights about molecular constraints, such as the interference of pericentromeric crossovers with chromosome segregation.  相似文献   

13.
《Fly》2013,7(2):134-140
During prophase of meiosis I, genetic recombination is initiated with a Spo11-dependent DNA double-strand break (DSB). Repair of these DSBs can generate crossovers, which become chiasmata and are important for the process of chromosome segregation. To ensure at least one chiasma per homologous pair of chromosomes, the number and distribution of crossovers is regulated. One system contributing to the distribution of crossovers is the pachytene checkpoint, which requires the conserved gene pch2 that encodes an AAA+ATPase family member. Pch2-dependent pachytene checkpoint function causes delays in pachytene progression when there are defects in processes required for crossover formation, such as mutations in DSB-repair genes and when there are defects in the structure of the meiotic chromosome axis. Thus, the pachytene checkpoint appears to monitor events leading up to the generation of crossovers. Interestingly, heterozygous chromosome rearrangements cause Pch2-dependent pachytene delays and as little as two breaks in the continuity of the paired chromosome axes are sufficient to evoke checkpoint activity. These chromosome rearrangements also cause an interchromosomal effect on recombination whereby crossing over is suppressed between the affected chromosomes but is increased between the normal chromosome pairs. We have shown that this phenomenon is also due to pachytene checkpoint activity.  相似文献   

14.
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle.  相似文献   

15.
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores.  相似文献   

16.
The genetics and cytology of a mutator factor in Drosophila melanogaster   总被引:15,自引:0,他引:15  
A Drosophila melanogaster mutator factor is described whose effects include the induction of unique chromosomal aberrations and male crossing over. Results of experiments to map the factor suggest that genetic transmission is somehow chromosomally associated but not localizable to the X, Y, second or third chromosome. There appears to be a good correlation between the distributions of male crossover exchange points and unique aberration breakpoints for the second chromosome but not for the third chromosome. The male crossovers, which occur more frequently in the centromeric region, occur in euchromatin rather than in the centric heterochromatin. The male crossovers tend to be rather precise reciprocal exchanges, since cytologically detectable deletions and duplications are only infrequently produced. It is suggested that the present mutator may be identical to earlier reported mutators of D. melanogaster.  相似文献   

17.
James M. Mason 《Genetics》1976,84(3):545-572
The effects of a semidominant autosomal meiotic mutant, orientation disruptor (symbol: ord), located at 2–103.5 on the genetic map and in region 59B-D of the salivary map, have been examined genetically and cytologically. The results are as follows. (1) Crossing over in homozygous females is reduced to about seven percent of controls on all chromosomes, with the reduction greatest in distal regions. (2) Crossing over on different chromosomes is independent. (3) Reductional nondisjunction of any given chromosome is increased to about thirty percent of gametes from homozygous females. The probability of such nondisjunction is the same among exchange and nonexchange tetrads with the exception that a very proximal exchange tends to regularize segregation. (4) Equational nondisjunction of each chromosome is increased to about ten percent of gametes in homozygous females; this nondisjunction is independent of exchange. (5) The distributive pairing system is operative in homozygous females. (6) In homozygous males, reductional nondisjunction of each chromosome is increased to about ten percent, and equational nondisjunction to about twenty percent, of all gametes. (7) Cytologically, two distinct meiotic divisions occur in spermatocytes of homozygous males. The first division looks normal although occasional univalents are present at prophase I and a few lagging chromosomes are seen at anaphase I. However, sister chromatids of most chromosomes have precociously separated by metaphase II. Possible functions of the ord+ gene are considered.  相似文献   

18.
Joyce EF  McKim KS 《Fly》2011,5(2):134-140
During prophase of meiosis I, genetic recombination is initiated with a Spo11-dependent DNA double-strand break (DSB). Repair of these DSBs can generate crossovers, which become chiasmata and are important for the process of chromosome segregation. To ensure at least one chiasma per homologous pair of chromosomes, the number and distribution of crossovers is regulated. One system contributing to the distribution of crossovers is the pachytene checkpoint, which requires the conserved gene pch2 that encodes an AAA+ATPase family member. Pch2-dependent pachytene checkpoint function causes delays in pachytene progression when there are defects in processes required for crossover formation, such as mutations in DSB-repair genes and when there are defects in the structure of the meiotic chromosome axis. Thus, the pachytene checkpoint appears to monitor events leading up to the generation of crossovers. Interestingly, heterozygous chromosome rearrangements cause Pch2-dependent pachytene delays and as little as two breaks in the continuity of the paired chromosome axes are sufficient to evoke checkpoint activity. These chromosome rearrangements also cause an interchromosomal effect on recombination whereby crossing over is suppressed between the affected chromosomes but is increased between the normal chromosome pairs. We have shown that this phenomenon is also due to pachytene checkpoint activity.  相似文献   

19.
20.
The multiply inverted X chromosome balancer FM7 strongly suppresses, or eliminates, the occurrence of crossing over when heterozygous with a normal sequence homolog. We have utilized the LacI-GFP: lacO system to visualize the effects of FM7 on meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. Surprisingly, the analysis of meiotic pairing and synapsis for three lacO reporter couplets in FM7/X heterozygotes revealed they are paired and synapsed during zygotene/pachytene in 70%–80% of oocytes. Moreover, the regions defined by these lacO couplets undergo double-strand break formation at normal frequency. Thus, even complex aberration heterozygotes usually allow high frequencies of meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. However, the frequencies of failed pairing and synapsis were still 1.5- to 2-fold higher than were observed for corresponding regions in oocytes with two normal sequence X chromosomes, and this effect was greatest near a breakpoint. We propose that heterozygosity for breakpoints creates a local alteration in synaptonemal complex structure that is propagated across long regions of the bivalent in a fashion analogous to chiasma interference, which also acts to suppress crossing over.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号