首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of T-cell functions by L-lactate   总被引:3,自引:0,他引:3  
Lactate is a product of glycolytically active macrophages. After stimulation with concanavalin A accessory cell-depleted splenic T-cell populations were found to produce only minute amounts of T-cell growth factor (TCGF); but substantial amounts of TCGF were produced if the cultures were supplemented either with splenic adherent cells or with lactate but not with interleukin-1 (IL-1). IL-1 was capable, however, of supporting TCGF production by the thymoma subline EL4-6.1. TCGF production in cultures of accessory cell-depleted splenic T-cell populations was demonstrable with 10(-3) M L-lactate, and optimal responses (plateau level) were obtained with 4-6 X 10(-2) M L-lactate. Cultures of macrophages were found to accumulate up to 5 X 10(-2) M lactate. Our experiments indicate, therefore, that lactate serves as a regulatory signal by which macrophage-like accessory cells enhance helper-T-cell functions. Lactate is apparently not the only mediator of accessory cell function since plateau levels of TCGF production were markedly lower with lactate than with splenic accessory cells; but L-lactate was found also to determine the magnitude of T-cell-mediated immune responses in vivo and in cultures of unfractionated lymphocyte populations. The production of interferon in accessory cell-depleted and concanavalin A-treated T-cell cultures, however, was not significantly affected by lactate. Concanavalin A-stimulated splenic T-cell populations were found to consume glucose rapidly and to release lactate into the supernatant. This indicates that the cells contain more lactate and pyruvate than they can utilize by their respiratory metabolism. The administration of external lactate or pyruvate was found to inhibit the utilization of glucose by the mitogenically stimulated T cells.  相似文献   

2.
We prepared the T cell growth factor (TCGF) from human spleen cell cultures stimulated with phytohemagglutinin (PHA). Various cell culture conditions and agents supporting the active TCGF production of the spleen cells were examined. The highest TCGF activity was obtained in the supernatants under the conditions that 2 x 10(6)/ml spleen cells were stimulated with PHA for 48 hr. Production of TCGF from spleen cells depended markedly on their individual sources. Addition of indomethacin to the culture or irradiation of the responding spleen cells increased TCGF activity in the supernatant of the culture. Further, addition of irradiated cells of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) to spleen cell cultures stimulated with PHA greatly enhanced TCGF production. Human splenic TCGF facilitated the establishment of human cytotoxic T cell (Tc) lines specific for EBV-transformed LCL cells when those Tc line cells were stimulated periodically with irradiated autologous LCL cells but not with the other two types (K-562 or Molt-4) of cells. Allogeneic LCL stimulators allowed the Tc line cells to proliferate. However, Tc line cells cocultured once with allogeneic LCL stimulators no longer exhibited EBV-specificity in their cytotoxicities.  相似文献   

3.
Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes.  相似文献   

4.
Differential effects of glutathione depletion on T cell subsets   总被引:3,自引:0,他引:3  
Glutathione (GSH) is known to play an important role in various lymphocyte functions. We now report that different T cell subsets express different requirements for intracellular GSH. Depletion of intracellular GSH by buthionine sulfoximine (BSO), a specific inhibitor of GSH biosynthesis, decreases the proportion of CD8+ cells (i.e., increases the CD4+/CD8+ ratio), and inhibits particularly the generation of large blast-like CD8+ cells and cytotoxic T lymphocyte (CTL) activity. CTL activity is restored by administration of exogenous GSH. Differential effects of GSH depletion were also seen at the level of individual T cell clones. The CD4+ helper T cell clone D10.G4.1.HD was found to express a high rate of interleukin 2 (IL-2) dependent DNA synthesis even after severe depletion of intracellular GSH, whereas other T cell clones including the clone 29 were severely inhibited by BSO. The results of these studies suggest that the decreased intracellular GSH levels of HIV-1 seropositive persons are probably not (directly) responsible for the selective depletion of the CD4+ T cell subset but may be responsible for a cellular dysfunction of the CD8+ subset and for the ultimate failure of the CTL to control the viral infection in these patients.  相似文献   

5.
Macrophages consume cystine and generate approximately equivalent amounts of acid-soluble thiol. Stimulation of macrophages with bacterial lipopolysaccharide (LPS) or tumor necrosis factor (TNF) strongly augments the amount of thiol released into the culture supernatant. Cysteine constitutes most of the acid-soluble thiol. The intracellular glutathione level and the DNA synthesis activity in mitogenically stimulated lymphocytes are strongly increased by either exogenously added cysteine, or (syngeneic) macrophages. This cysteine dependency is observed even in the presence of relatively high extracellular cystine concentration as they occur in the blood plasma. The extracellular cysteine concentration also has a strong influence on the intracellular glutathione concentration, viability, and DNA synthesis of cycling T cell clones. Moreover, the cysteine concentration in the culture medium on Day 3 and Day 4 of a 5-day allogeneic mixed lymphocyte culture (i.e., in the late phase of incubation) has a strong influence on the generation of cytotoxic T cell activity, indicating that regulatory effects of cysteine are not restricted to the early phase of the blastogenic response. The inhibitory effect of cysteine starvation on the DNA synthesis of the T cell clones and on the activation of cytotoxic T lymphocytes can be explained essentially by the depletion of intracellular glutathione, since similar effects are observed after treatment with buthionine sulfoximine (BSO), a specific inhibitor of the glutathione biosynthesis. BSO has practically no influence, however, on the N alpha-benzyloxycarbonyl Ne-t-butyloxycarbonyl-L-lysine-thiobenzyl-ester (BLT)-esterase activity and hemolytic activity of the cell lysates from cytotoxic T cells against sheep red blood cells (perforin activity). Taken together, our experiments indicate that cysteine has a regulatory role in the immune system analogous to the hormone-like lymphokines and cytokines. It is released by macrophages at a variable and regulated rate and regulates immunologically relevant functions of lymphocytes in the vicinity.  相似文献   

6.
In order to determine whether the cysteine requirement of human T lineage cells is met primarily by extracellular cysteine or by cystine, amino-acid-transport activities were measured in resting and mitogenically stimulated human peripheral blood lymphocytes (PBL) and several human T cell clones and T cell tumors. The transport activity of the small neutral amino acids cysteine and alanine (ASC system) and the transport of the cationic amino acid arginine (y+ system) were found to be markedly increased after stimulation of PBL by the T cell mitogen phytohemagglutinin from Phaseolus vulgaris. The anionic transport activity for cystine and glutamate (Xc- system), in contrast, was extremely weak in both resting and activated human PBL and also in all human T cell lines under test. The weak system Xc- activity of human T lineage cells was further confirmed by an independent line of experiments showing that an increase of the extracellular concentration of glutamate, i.e. a competitive inhibitor of cystine transport, causes a decrease in the intracellular cystine levels in cells of the promonocytic line U937, but not in T lineage cells (Molt-4). A third set of experiments showed that the rate of DNA synthesis in mitogenically stimulated human PBL is strongly influenced by variations of the extracellular cysteine level, even in cultures with relatively high and approximately physiological concentrations of cystine. Cysteine cannot be replaced in this case by the addition of corresponding amounts of cystine or methionine. This demonstrates an important functional consequence of the weak cystine transport activity of human lymphocytes. The results may be relevant for the pathogenetic mechanism of the acquired immunodeficiency syndrome, since the mean plasma cysteine concentration of human-immunodeficiency-virus-1-seropositive persons was found to be strongly decreased in comparison with that of healthy blood donors, and since the cysteine level even of healthy persons is extremely low in comparison with all other protein-forming amino acids.  相似文献   

7.
The detailed kinetics of TCGF accumulation in Con A-stimulated spleen cell cultures shows a maximum at 24 hr, with a subsequent decrease in activity. This decrease is not due to the appearance of inhibitory substances "masking" TCGF activity. Pulse experiments show that the rate of TCGF production falls sharply after 18 hr and is completely arrested after 24 hr of Con A stimulation. The arrest in TCGF production is the result neither of culture depletion in medium components nor of limiting accessory cell function or inactivation of the lectin, and it thus seem to be the result of inactivation of TCGF-producing T cells. This regulation is not the result of a TCGF-mediated feedback mechanism but rather of lectin-induced suppressive cells that appear in culture after 24 hr and turn off de novo production of TCGF in fresh cultures.  相似文献   

8.
L-Buthionine-(S,R)-sulfoximine (BSO) specifically depletes GSH synthesis by inactivating gamma-glutamylcysteine synthetase, whereas 2-ME augments intracellular GSH concentration. These reagents were used to examine GSH regulation of the proliferation and function of human PBL in response to IL-2 or OKT-3 mAb directed at the CD3 T cell Ag. 2-ME enhanced both IL-2-induced proliferation of PBL and CD3- large granular lymphocytes (LGL) and OKT-3 mAb-induced proliferation of CD3+ T cells. BSO partially suppressed activation-induced proliferation in CD3- LGL and CD3+ T cells and totally inhibited the positive co-proliferative regulation by 2-ME in these cells. By contrast, neither BSO nor 2-ME appeared to affect the activation-dependent differentiation of cytotoxic lymphocytes. The absence of effect of 2-ME or BSO on activation-induced PBL NK activity and T cell cytotoxic potential was supported by their negligible effect on the induction of two different markers of activated cytotoxic lymphocytes, namely pore-forming protein gene expression and benzoyloxycarbonyl-1-L-lysine thiobenzylester-esterase activity. BSO inhibition of CD3- LGL proliferation accounted for the inhibitory effects of BSO on both IFN-gamma production in IL-2-stimulated PBL cultures and IL-2-induced PBL lymphokine activated killer activity. The modulatory effects of 2-ME and BSO on lymphocyte proliferation regardless of phenotype (LGL vs T cell) or stimulation (IL-2, via CD3, lectin, etc.) and the functional differentiation of cytotoxic lymphocytes independent of proliferation suggests that these cells share a common site of GSH regulation close to or at the level of DNA synthesis.  相似文献   

9.
Glucocorticoids suppress the proliferation of human T lymphocytes. Activated T lymphocytes require T cell growth factor (TCGF) for proliferation. TCGF is produced by a subset of T lymphocytes, and this production is regulated at the TCGF mRNA level. Dexamethasone, a synthetic glucocorticoid, strongly inhibits the synthesis of TCGF mRNA in human normal peripheral blood lymphocytes stimulated in culture with phytohemagglutinin. It also inhibits the accumulation of gamma-interferon mRNA in these cells. This dual effect may in part explain some of the immunosuppressive and anti-inflammatory effects of glucocorticoids.  相似文献   

10.
Glutathione (GSH) the most abundant nonprotein thiol, is involved in the maintenance of the cellular redox state. In this capacity it may influence lymphocyte responsiveness to various stimuli. We have investigated the requirement of GSH during the activation and proliferation of PBMC. The intracellular GSH content of PBMC was altered by continuous culture or pretreatment with buthionine-S,R-sulfoximine (BSO), a specific and irreversible inhibitor of GSH synthesis. Initial experiments demonstrated that the addition of BSO at the initiation of culture, or shortly thereafter (6 hr), inhibited DNA synthesis and produced a simultaneous decrease in intracellular GSH. It was necessary that the BSO be present in the culture for at least 24 hr prior to the initiation of DNA synthesis for maximal inhibition. Cell cycle analysis revealed that BSO did not affect the entry and progression of PBMC through G1 of the cell cycle, however, entry into S-phase was inhibited in a dose-dependent fashion. These results were further substantiated by the inability of BSO to inhibit IL-2 production and expression of the IL-2R. In addition the timely expression of the transferrin receptor by BSO-treated cells indicated that the block occurred at the G1/S transition. The influence of GSH on early activation events was determined by BSO pretreatments. Lowering the intracellular GSH level of PBMC to less than 10% of the initial content prior to mitogenic stimulation did not impair the ability of these cells to produce IL-2 and express IL-2R, indicating that GSH may not be involved in the generation and response to early activation signals. Furthermore, the removal of BSO from these cultures rapidly reversed its inhibitory effects on DNA and GSH synthesis. In the course of these studies we also observed a modest (17%) albeit consistent increase during activation in the total thiol levels of GSH-depleted PBMC. These thiols may have a key role in the activation process. These data support our hypothesis that GSH is required for lymphocyte proliferation and that additional thiols are involved during the activation process.  相似文献   

11.
The role of glutathione (GSH) in lectin-induced lymphocyte activation can be studied by quantitating lectin-induced nuclear size transformation in the presence of variable degrees of GSH depletion. Buthionine sulfoximine (BSO) inhibits intracellular GSH synthesis by inhibition of the enzyme gamma-glutamyl-cysteine synthetase. By combining endogenous GSH depletion in cell cultures with BSO-induced inhibition of GSH synthesis, lectin-induced lymphocyte activation can be studied at various concentrations of soluble intracellular GSH. With this approach, the percentage of lymphocytes undergoing a nuclear size transformation is minimally affected despite depletion of soluble intracellular GSH to 0.27 nmol/10(7) cells (PBL), which represents approximately 95% depletion of intracellular GSH. When soluble intracellular GSH is depleted to undetectable levels (less than 0.10 nmol/10(7) cells) there is a 10 to 12% reduction in the number of cell nuclei transformed. However, in all BSO-pretreated cultures the lectin-induced nuclear size transformation is intermediate between resting and blast-transformed lymphocytes, suggesting only partial (or aborted) activation. The partial activation response observed in BSO-pretreated cultures may be due to mobilization of the protein-bound pool of GSH, which is relatively resistant to depletion by BSO. That the inhibition of full blast transformation is truly due to GSH depletion was proven by experiments in which GSH was repleted exogenously and a full blast transformation was restored. The results of previous work in our laboratory had shown that the sulfhydryl-reactive agent 2-cyclohexene-1-one (2-CHX) was a potent inhibitor of activation at soluble intracellular GSH concentrations well above 0.27 nmol/10(7) PBL. In the present study, the dose-dependent inhibition of activation by 2-CHX was confirmed, but it was shown that the degree of inhibition caused by 2-CHX could be at least partially dissociated from the level of intracellular GSH present at the time of lectin addition and that the inhibitory potential of 2-CHX exceeded that of BSO at comparable levels of soluble intracellular GSH. Thus, the inhibitory properties of 2-CHX cannot be accounted for solely on the basis of GSH depletion.  相似文献   

12.
Coculture of resting human B cells with T cells stimulated with immobilized mAb to the CD3 molecular complex induces polyclonal activation and the production of Ig of all isotypes. The current experiments were carried out to determine the nature of the signals provided to B cells by the anti-CD3-activated T cells. For these experiments, fresh T cells or T cell clones were activated with immobilized mAb to CD3 and then fixed with 1% paraformaldehyde. Upon coculture, the fixed activated T cells or T cell clones induced B cell RNA synthesis and IL-2R expression, but only minimal DNA synthesis and no Ig production. Induction of B cell RNA synthesis by fixed activated T cells was not inhibited by mAb to the alpha-chain of the IL-2R, and was not enhanced by supplementing cultures with IL-2, IL-4, IL-6, or supernatants of mitogen-activated T cells. Upon the addition of IL-2, but not IL-4 or IL-6, to cultures of B cells and fixed activated T cells, sustained proliferation was noted along with the production of Ig. Control fixed T cells or T cell clones did not induce any of these responses. The presence of cycloheximide or cyclosporin A during the activation with anti-CD3 prevented T cells from developing the capacity to provide help for B cells. The use of mAb to a variety of cell surface molecules indicated that several T cell surface molecules including CD11a/CD18, CD44, CD54, and class I MHC molecules are involved in the induction of B cell responses. Among the mAb that inhibited B cell DNA synthesis and/or Ig production, only mAb to CD11a, CD18, or CD54 inhibited initial B cell activation as assessed by RNA synthesis. Even though mAB to CD11a/CD18 inhibited the capacity of fixed activated T cells to induce B cell responses, the finding that fixed activated CD18 deficit clones provided help for B cells indicated that expression of the beta 2 family of integrins by T cells was not necessary. These results indicate that activated T cells acquire the capacity to stimulate B cells polyclonally and induce cytokine responsiveness, proliferation, and Ig production by utilization of a variety of surface molecules. Moreover, these results indicate that the initial activation of the B cell is independent of the metabolic activity of the T cell and the production of cytokines.  相似文献   

13.
Regulation of T cell cytokine production by dendritic cells   总被引:7,自引:0,他引:7  
Previous work has established that the dendritic cells (DC) of mouse spleen regulate the IL-2 production, and hence the extent of proliferation, of the CD8 T cells they activate. It is now reported here that interaction of primary CD8 T cells with splenic CD8alpha- DC induced much higher production of IL-3, IFN-gamma and granulocyte-macrophage colony-stimulating factor (GM-CSF), as well as IL-2, than did interaction with CD8alpha+ splenic DC. Furthermore, the CD8alpha- DC also induced higher levels of IL-2, IL-3 and IL-10 production in primary CD4 T cells, compared with that induced by CD8alpha+ DC. These quantitative differences did not involve qualitative shifts in the type of cytokine produced. Interleukin-4 production remained low in all the primary T cell cultures and restimulation experiments in secondary cultures did not reveal any bias in the cytokine production profile. When exogenous IL-2 was added to the primary cultures to ensure equal proliferation in response to CD8alpha- or CD8alpha+ DC, the higher level of production of IL-3, IFN-gamma and GM-CSF induced by CD8alpha- DC was maintained. Thus, this general control of T cell cytokine production by splenic DC involves factors additional to those that govern activation of T cells into cell cycle.  相似文献   

14.
The level of intracellular glutathione (GSH) in mitogen-stimulated mouse lymphocytes is increased in the presence of 2-mercaptoethanol (2-ME), an enhancer of lymphocyte activation and proliferation. Since proliferation of lymphocytes in response to mitogens involves direct activation by a mitogen followed by continued proliferation in response to interleukin-2 (IL-2), we have investigated the effect of 2-ME and exogenous IL-2 on the GSH content and cell proliferation of rat lymphocytes stimulated with phytohemagglutinin (PHA). PHA stimulation increased both GSH content and the magnitude of the proliferative response, as measured by thymidine incorporation into cellular DNA. However, incubation of stimulated lymphocytes with 2-ME or IL-2 for 72 hr produced a significant further elevation of GSH levels and thymidine incorporation. 2-ME also increased the GSH content in unstimulated cultures, but it had little effect on thymidine incorporation. IL-2 increased GSH content and decreased thymidine incorporation in unstimulated lymphocytes. Exposure of cells to DL-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GSH biosynthesis, significantly depleted GSH and lowered the proliferative response, suggesting a crucial role of de novo GSH synthesis for lymphocyte activation. The data suggest that both 2-ME and IL-2 promote lymphocyte proliferation, although the mechanisms by which intracellular GSH levels are increased by the agents are apparently different.Copies of articles are available through ISI Document Delivery Services c/o The Genuine Article, 3501 Market Street, Philadelphia, PA 19104.  相似文献   

15.
Blast transformation studies have indicated a diminished T cell response in spleen cell preparations from rabbits infected with Treponema pallidum. IL-2 synthesis by T lymphocytes is required for proliferation of these cells. Thus, Con A-induced IL-2 generation was measured in syphilitic animals infected for 9 to 14 days. IL-2 production in the infected rabbits was only one-half that observed for uninfected rabbits. This marked decrease in IL-2 was not caused by decreased IL-1 secretion by adherent cells from infected animals because similar levels were found in both infected and uninfected splenic cultures. This decrease was also not caused by an increase in infected spleen cell adsorption of IL-2; similar numbers of receptors for this IL were present in Con A-stimulated infected and uninfected splenic preparations. The inhibited IL-2 production in infected spleen cells was reversed upon removal of the adherent cells and also elevated upon addition of indomethacin to the cultures. PGE levels were also elevated in splenic cultures from infected animals. Finally, IL-2 synthesis, when evaluated at various days postinfection, showed that at 4 days, splenic cells generated twice as much IL-2 as uninfected cells. At 9 to 14 days, IL-2 levels were dramatically decreased (50% lower than that observed in uninfected cultures), and suppression of IL-2 by adherent cells was observed as late as 35 days post-infection. We propose that premature down regulation (suppression) of IL-2 secretion is mediated by adherent cells via a cyclo-oxygenase product, most likely PGE. These results may explain why most, but not all, treponemes are cleared during infection, and why the secondary manifestations of the disease occur.  相似文献   

16.
Treatment of EL-4 lymphoma cells with tetradecanoylphorbol-acetate (TPA), a well-known activator of protein kinase C, induces the production of the T cell growth factor interleukin-2 (IL-2) and the expression of IL-2-specific mRNA within 4-8 h. This system is an ideal model for studies on the induction of a differentiated function in a homogeneous lymphoid cell population by a defined signal. TPA induces also an increase of ornithine decarboxylase (ODC) activity and elevates the intracellular concentrations of putrescine and polyamines within 4-8 h. A similar increase of intracellular putrescine and polyamine concentrations can be achieved by administration of 2 mM putrescine to the culture medium. However, putrescine cannot induce the production of IL-2 in the absence of TPA and cannot reconstitute the IL-2 production in cultures with PGE2 or cyclosporine A, i.e., two well-known immunosuppressive substances which inhibit ODC activity. Putrescine has rather a counter-regulatory effect as concluded from the observation that the TPA-induced TCGF production and IL-2-specific mRNA expression are augmented (superinduced) by the ODC inhibitor D,L-alpha-difluoromethylornithine (DFMO) and again suppressed after the administration of putrescine or polyamines to DFMO-treated cultures. The glycolytic activity, general protein synthesis [( 3H]leucine incorporation), and the cell cycle progression from G2/M to G1, in contrast, are inhibited by DFMO and reconstituted by putrescine. This demonstrates that the cells are able to sacrifice to a large extent several vital functions including their general protein synthesis and to devote themselves at the same time to a fulminant production of their functionally most relevant protein IL-2. This process is downregulated by ODC and its product putrescine. A correlation between increased IL-2 production and accumulation of cells in the G2/M phase was also observed in cultures treated with hydroxyurea or with a combination of amethopterin and adenosine.  相似文献   

17.
Promotion of human T lymphocyte proliferation by IL-4   总被引:6,自引:0,他引:6  
The capacity of human rIL-4 to support the proliferation of mitogen-stimulated T cells directly as well as by increasing IL-2 production or enhancing IL-2 responsiveness was investigated. IL-4 augmented proliferation of T cells stimulated with PHA, Con A, immobilized mAb to the CD3 molecular complex (OKT3), or PMA. IL-4 increased the number of mitogen-stimulated cells entering the cell cycle as well as enhancing ongoing proliferation of mitogen-activated lymphoblasts. Facilitation of initial activation by IL-4 was not inhibited by mAb to the p55 component of the IL-2R, anti-Tac, and, therefore, was not dependent on endogenous IL-2 activity. However, IL-4-mediated enhancement of ongoing T cell proliferation stimulated by PHA or OKT3 was partially but not completely blocked by anti-Tac. Analysis of the supernatants from PHA-stimulated T cell cultures indicated that IL-4 increased the production of IL-2 by mitogen-activated cells. Moreover, IL-4 increased the amount of IL-2 mRNA that accumulated in mitogen-stimulated T cells. In addition, IL-4 markedly augmented IL-2R expression by PHA-stimulated T cells. Although IL-4 promoted ongoing DNA synthesis of mitogen-stimulated T cells in an IL-2-dependent manner, it was also able to sustain their proliferation directly. Thus, IL-4 supported proliferation of PMA-activated T cells in a manner that was not inhibited by anti-Tac. Furthermore, IL-4 could augment proliferation and IL-2R expression of T cells stimulated with PHA in the presence of cyclosporin A, which blocks endogenous cytokine production or anti-Tac. Finally, IL-4 was noted to enhance proliferation of both CD4+ and CD8+ T cell subsets. The results indicate that IL-4 enhances proliferation of mitogen-activated human T cells by a number of mechanisms, including the direct promotion of cell cycle entry and subsequent DNA synthesis, enhanced production of IL-2, and increased responsiveness to IL-2 in part by up-regulation of IL-2R expression.  相似文献   

18.
We describe the properties of two Ly-1+2- T cell clones (Ly-1.14 and Ly-1.21), which are maintained in long-term culture in the absence of other cell types. The clones require media containing a source of interleukin 1 as well as interleukin 2. They retain physiologic responses to interleukin 1, which is required for optimal production of T cell lymphokines by these clones in response to concanavalin A (Con A). The two Ly-1+2- T cell clones differ in their production of lymphokines after stimulation by Con A. The supernatant of clone Ly-1.21 promotes the proliferation of T cells maintained in long-term culture, induces antibody synthesis in cultures of B cells and antigen, and induces the differentiation of cytolytic cells in cultures of thymocytes and antigen; these assays define the properties of T cell growth factor (TCGF), T cell-replacing factor for B cells (TRF-B), and T cell-replacing factor for cytolytic cells (TRF-C), respectively. In contrast, the supernatant of clone Ly-1.14 contains only TCGF activity and does not promote antibody synthesis by B cells or differentiation of cytolytic cells from thymocytes. The results indicates that TCGF and TRF activities reside on independent, although perhaps related, molecules.  相似文献   

19.
S Roth  W Dr?ge 《Cellular immunology》1987,108(2):417-424
Activated macrophages are known to release a variety of immunoregulatory substances including the low-molecular-weight substances hydrogen peroxide and lactate. We report here that lactate but not hydrogen peroxide is capable of supporting a substantial production of T-cell growth factor (TCGF) in cultures of accessory cell-depleted splenic T-cell populations after stimulation with concanavalin A. Hydrogen peroxide and its biosynthetic precursor superoxide anion (O2-) mediate, however, a strong augmentation of the TCGF production by accessory cell-depleted T-cell populations in the presence of lactate. Lactate inhibits the incorporation of [3H]thymidine in short-term cultures (18-26 hr) of accessory cell-depleted T cells. This confirms the rule that (optimal) production of T-cell growth factor requires a growth inhibitory signal. Concentrations of hydrogen peroxide which augment TCGF production most effectively (i.e., 1 X 10(-5) M) do not inhibit the incorporation of [3H]thymidine; and higher concentrations (3 X 10(-5)-1 X 10(-4) M) of hydrogen peroxide inhibit both the production of TCGF and the incorporation of [3H]thymidine. In agreement with the augmenting effect of hydrogen peroxide on TCGF production, it was observed that the proliferative response in mixed lymphocyte cultures is suppressed by catalase and augmented by 1 X 10(-5) M H2O2. Proliferative and cytotoxic responses in mixed lymphocyte cultures with an external source of interleukin 2 (IL-2) in contrast, are not augmented by 1 X 10(-5) M H2O2. The relatively high concentration of 1 X 10(-4) M hydrogen peroxide was found to inhibit the proliferative responses in mixed lymphocyte cultures with or without external IL-2 but not the cytotoxic response in the presence of IL-2. This indicates that CTL precursor cells may be relatively resistant against H2O2.  相似文献   

20.
白细胞介素—2加强小鼠T淋巴细胞产生白细胞介素—3   总被引:1,自引:0,他引:1  
In addition to the regulation of T cell growth, IL-2 exerts effects on the induction of certain lymphokines. We show here that IL-2 synergizes with 5 micrograms/ml of ConA to promote the production of IL-3 in mouse splenic T cell cultures. IL-3 was measured as CFU-GEMM-inducing activity on mouse bone marrow progenitor cells in the supernatant of the stimulated mouse splenic T cells (TCM). The resting T cells produced no CFU-GEMM-inducing activity, but could be induced to produce low level of CFU-GEMM-inducing activity in the presence of ConA. In vitro exposure to IL-2 markedly increased CFU-GEMM-inducing activity production (nearly up to 8-fold) by the ConA-activated T cells. Optimal stimulation was observed when 80 u/ml IL-2 was used for 48 h incubation. Anti-mouse IL-3 monoclonal antibody inhibited the CFU-GEMM inducing activity of TCM. Moreover, the TCM stimulated the proliferation of IL-3 dependent cell line FDC-P1. We also show that IL-2 and ConA-treated T cells expressed high level of IL-3 mRNA through dot blot analysis. These results confirmed the nature of CFU-GEMM-inducing activity of TCM as IL-3. The capacity of IL-2 to promote the production of IL-3 may represent an important mechanism by which it mediate the communication between the immune and hematopoietic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号