首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp.  相似文献   

2.
外界光强和光质对植物的影响在植物生理生态研究领域中一直受到高度关注。而测定光强的光量子计不能测定光质; 测定光质的光谱仪不能直接测定光强, 两者均不能同步测定光强和光质。该文作者建立了一个基于光谱仪测定条件的能量与光量子的经验转换公式, 用4只不同波长的窄带发光二极管(LED)光源结合光量子计(LI-190SB)对便携式光谱仪(AvaSpec-ULS2048×64)所获得的光谱进行了快速标定, 实现了用便携式光谱仪同步直接测定光量子通量密度和光质的目的。在自然光照条件下, 采用转换公式计算出光量子通量密度(PPFD)与实测的PPFD之间误差在-2%-5%范围内, 证实了这种方法的可靠性。通过这个新方法, 可以极大地拓宽便携式光谱仪的适用范围: 1)实验室内或野外只需用便携式光谱仪即可对光源及植物生长的光强和光质环境进行同步精确测定和计算; 2)可以计算光谱仪测定范围内任意波长区段的光量子通量密度; 3)无需采用标准光源即可获得绝对辐射(光)通量值。因此, 这项技术在植物生理生态研究领域具有广阔的应用前景。  相似文献   

3.
《植物生态学报》2015,39(9):917
The influence of light intensity and light quality on plants is highly concerned in the field of plant physiology and ecology. However, the calibrated quantum meter for measurement of light intensity cannot measure light quality, and vice versa. Here we developed an empirical formula to convert light energy to photon flux density, based on the measurement conditions of spectrometer. Under the guide of the formula, a portable spectrometer (AvaSpec-ULS2048×64) was calibrated by using four narrowband light emitting diode (LEDs) in combination with a calibrated quantum meter (LI-190SB). After calibration of the spectrometer, we can calculate photosynthetic photon flux density (PPFD or PAR) and measure spectrum of radiation flux simultaneously. Under natural light conditions, the errors between measured and calculated PPFDs are in the range from -2% to 5%, indicating the reliability of the method. With this new approach, the application of portable spectrometer can be greatly broadened: 1) the light intensity and quality of light source and plant growth light environment can be obtained simultaneously, 2) PPFD can be obtained within any specified wavelength range, and 3) there is no need to use standard light source to obtain the absolute light/radiation flux of a spectrum measured by spectrometer. In conclusion, this method has potential applications for the study of plant physiology and ecology.  相似文献   

4.
Summary The anthracene-benzene chemical light meter is used in ecological studies to measure solar radiation. The meter absorbs only in the ultraviolet (UV) and, in principle, relies on the conversion, by solar UV, of anthracene to dianthracene. In practice, the investigator uses a calibration curve to convert decrease of anthracene in solution to solar radiation received. Our results show that significant errors occur when a calibration curve is used under different atmospheric conditions than those under which it is prepared. The reason is that the ratio of solar UV to other portions of the solar spectrum reaching the earth's surface is modified by atmospheric conditions. Furthermore, percentage of UV in the solar spectrum is modified by latitude, season, time of day, atmospheric pollutants and layers of water and vegetation. Thus, successful use of light meters that utilize chemical conversions by solar UV to measure other portions of the solar spectrum are dependent on the preparation of a calibration curve for each condition under which the meter is used.  相似文献   

5.
Light is crucial for the synchronization of internal biological rhythms with environmental rhythms. Hospitalization causes a range of unfavorable medical conditions, including delirium, sleep disturbances, depressed mood, and increased fall, especially in elderly people. The hospital room environment contributes significantly to patients’ circadian physiology and behavior; however, few studies have evaluated light intensity in hospital settings. In this study, bedside light intensity during the daytime (6:00–21:00) was measured at 1-min intervals using a light meter on 4869 bed-days at the Inabe General Hospital in Mie, Japan (latitude 35°N), for approximately 1 month in each season. Daytime light exposure in home settings was measured in nonhospitalized elderly individuals (n = 1113) for two consecutive days at 1-min intervals using a wrist light meter. Median daytime light intensities at window and nonwindow hospital beds were 327.9 lux [interquartile range (IQR), 261.5–378.4] and 118.4 lux (IQR, 100.6–142.9), respectively, and daytime light intensity measured in nonhospitalized elderly individuals was 337.3 lux (IQR, 165.5–722.7). Compared with data in nonhospitalized elderly individuals, nonwindow beds were exposed to significantly lower daytime light intensity (p < 0.001), whereas window beds were exposed to similar daytime light intensity to that of home settings (p = 1.00). These results were consistent regardless of seasons (spring, summer, fall, and winter) or room directions (north vs. south facing). The lowest median daytime light intensity was observed at nonwindow beds in north-facing rooms during the winter (84.8 lux; IQR, 76.0–95.8). Further studies evaluating the incidence of in-hospital outcomes between patients hospitalized in window and nonwindow beds are needed.  相似文献   

6.
Carter GA  Smith WK 《Plant physiology》1985,79(4):1038-1043
The influence of shoot structure on net photosynthesis was evaluated under field conditions for the central Rocky Mountain (United States) conifers Picea engelmannii (Parry ex Engelm.), Abies lasiocarpa ([Hook] Nutt.), and Pinus contorta (Engelm.). In all species, the greater number of needles per unit stem length on sun shoots correlated with a smaller silhouette leaf area to total leaf area ratio (STAR). Decreased STAR was due primarily to greater needle inclination toward the vertical, plus some needle mutual shading. However, photosynthesis expressed on a total leaf area basis did not decrease in sun shoots (lower STAR) but remained nearly constant at approximately 3 micromoles per square meter per second over a wide range of STAR (0.1 to 0.3). Relatively low light saturation levels of 200 to 1400 microeinsteins per square meter per second and diffuse light to 350 microeinsteins per meter per second maintained photosynthetic flux densities in inclined and/or shaded needles at levels comparable to those in unshaded needles oriented perpendicular to the solar beam. As a result, net CO2 uptake per unit stem length increased as much as 2-fold in sun shoots (low STAR) in direct proportion to increasing needle density.  相似文献   

7.
轻型飞机防治森林害虫技术   总被引:5,自引:0,他引:5  
论述海燕650B轻型飞机防治森林害虫的作业技术,系统探讨诸因素与防治效果和作业效率的关系。结果表明,海燕650B轻型飞机在风速小于3m/s,飞行高度在10-25m间,作业速度110km/h时,利用超低量喷洒技术,运用风动式雾化器喷洒白僵菌生物制剂与化学农药的混合剂防治森林害虫,防治效果好,经济效益高。  相似文献   

8.
A simple and fast method is presented for the isolation and separation of human cardiac myosin light chains. The method requires only a crude myosin for splitting into heavy and light chains. The separation of the light chains is made by isoelectric precipitation with good yield.  相似文献   

9.
We investigated the effect of growth light intensity on the photosynthetic apparatus of pea (Pisum sativum) thylakoid membranes. Plants were grown either in a growth chamber at light intensities that ranged from 8 to 1050 microeinsteins per square meter per second, or outside under natural sunlight. In thylakoid membranes we determined: the amounts of active and inactive photosystem II, photosystem I, cytochrome b/f, and high potential cytochrome b559, the rate of uncoupled electron transport, and the ratio of chlorophyll a to b. In leaves we determined: the amounts of the photosynthetic components per leaf area, the fresh weight per leaf area, the rate of electron transport, and the light compensation point. To minimize factors other than growth light intensity that may alter the photosynthetic apparatus, we focused on peas grown above the light compensation point (20-40 microeinsteins per square meter per second), and harvested only the unshaded leaves at the top of the plant. The maximum difference in the concentrations of the photosynthetic components was about 30% in thylakoids isolated from plants grown over a 10-fold range in light intensity, 100 to 1050 microeinsteins per square meter per second. Plants grown under natural sunlight were virtually indistinguishable from plants grown in growth chambers at the higher light intensities. On a leaf area basis, over the same growth light regime, the maximum difference in the concentration of the photosynthetic components was also about 30%. For peas grown at 1050 microeinsteins per square meter per second we found the concentrations of active photosystem II, photosystem I, and cytochrome b/f were about 2.1 millimoles per mol chlorophyll. There were an additional 20 to 33% of photosystem II complexes that were inactive. Over 90% of the heme-containing cytochrome f detected in the thylakoid membranes was active in linear electron transport. Based on these data, we do not find convincing evidence that the stoichiometries of the electron transport components in the thylakoid membrane, the size of the light-harvesting system serving the reaction centers, or the concentration of the photosynthetic components per leaf area, are regulated in response to different growth light intensities. The concept that emerges from this work is of a relatively fixed photosynthetic apparatus in thylakoid membranes of peas grown above the light compensation point.  相似文献   

10.
The linear response of photosynthesis to light at low photon flux densities is known to change abruptly in the vicinity of the light compensation point so that the quantum yield seems to decrease as radiation increases. We studied this `Kok effect' in attached sunflower (Helianthus annuus L. cv IS894) leaves using gas exchange techniques. The effect was present even though respiration was constant in the dark. It was observed at a similar photon flux density (7 to 11 micromole photons per square meter per second absorbed photosynthetically active radiation) despite a wide range of light compensation points as well as rates of photosynthesis. The effect was not apparent when photorespiration was inhibited at low pO2 (1 kilopascal), but this result was complicated because dark respiration was quite O2-sensitive and was partially suppressed under these conditions. The Kok effect was observed at saturating pCO2 and, therefore, could not be explained by a change in photorespiration. Instead, the magnitude of the effect varied as dark respiration varied in a single leaf, and was minimized when dark respiration was minimized, indicating that a partial suppression of dark respiration by light is responsible. Quantum yields measured at photon flux densities between 0 and 7 to 11 micromole photons per square meter per second, therefore, represent the combined yields of photosynthesis and of the suppression of a component of dark respiration by light. This leads to an overestimate of the quantum yield of photosynthesis. In view of these results, quantum yields of photosynthesis must be measured (a) when respiration is constant in the dark, and (b) when dark respiration has been inhibited either at low pO2 to eliminate most of the light-induced suppression of dark respiration or at photon flux densities above that required to saturate the light-induced suppression of dark respiration. Significant errors in quantum yields of photosynthesis can result in leaves exhibiting this respiratory behavior if these principles are not followed.  相似文献   

11.
GOLDSWORTHY  A. 《Annals of botany》1978,42(6):1315-1325
A portable instrument is described which measures simultaneouslythe light intensity above and below a leaf canopy, calculatesthe absorbance (extinction) and displays it continuously ona meter. It measures the capacity of the crop to absorb lightand so provides an estimate of its density and, by inference,the approximate photosynthetic potential. The measurements,which are simple and non destructive, have been shown to correlatewith seed-rate, sowing date, seed-vigour and final yield inwheat. Although originally designed for cereals, the instrumentmay also find application with other crops. crop density measurement, creals, light abrbanace  相似文献   

12.
Mutagenicity of coolwhite fluorescent light for Salmonella   总被引:1,自引:0,他引:1  
The most common fluorescent lamps in use today in homes and businesses in the United States, 'coolwhite' fluorescent lamps, emit light that is mutagenic for Salmonella. Strains that carry both a uvrB mutation and plasmid pKM101 are extremely susceptible to this light-induced mutation. Both base substitution and frameshift mutations can be induced without substantial lethal effects on the bacteria. Induced mutations accumulate essentially as a linear function of the time bacteria are exposed to illumination. Of Salmonella histidine-requiring strains with known nucleotide target sequences (Hartman et al., 1986; Cebula and Koch, 1989, 1990), strains either carrying one of the base substitution mutations, hisG428 and hisG46, or one of the frameshifts, hisC3076 and hisD6610, are most highly mutagenized whereas frameshift strains with hisD6580 and hisD3052 exhibit lower rates of mutagenesis. Mutagenicity does not appear to require the presence of oxygen. A filter blocking wavelengths below 370 nm eliminates mutagenesis. Polystyrene, cellulose acetate and, especially, mylar and glass filters reduce mutagenesis, indicating that at least some of the mutagenic effects can be attributed to leakage of radiations below 290 nm (far-ultraviolet light) from 'coolwhite' lamps. The more recently introduced fluorescent 'softwhite' lamps are roughly 10-fold less mutagenic at approximately equal light intensity. Incandescent light bulbs are much less mutagenic than are these fluorescent lamps. Our mutational data correlate closely with previous results in eukaryotic cells (Jacobson and Krell, 1982). A uvrB recA Salmonella double mutant is hypersensitive to the lethal effects of coolwhite fluorescent light, even when illuminated through the lids of glass Petri dishes. Thus, appropriate Salmonella strains would appear to be simple and useful screens for both the mutagenic and the lethal activities of fluorescent lamps. These systems are amenable to classroom laboratory use as relatively safe and effective means of demonstrating environmental mutagenesis.  相似文献   

13.
A rabbit serum protein (Prt) that migrates ahead of transferrin in polyacrylamide gel electrophoresis is inherited in a simple Mendelian fashion. The gene for this protein is linked to the gene for the Ig kappa light chain and the degree of linkage is calculated as 23.5 +/- 4.7 centimorgans.  相似文献   

14.
A simple mixing device for studying fast reactions by quasielastic light scattering is described. The convection due to mixing is minimized and rapidly damped, so that light scattering measurements can be made immediately after mixing.  相似文献   

15.
Light increased the initial rate and the extent of glycerate uptake by intact isolated chloroplasts. Half-maximum stimulation occurred with 10 to 20 watts per square meter of red light. Preillumination of chloroplasts enhanced uptake in a subsequent dark period. The light effect was abolished by DCMU and also by uncoupling agents such as nigericin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone.

Arsenate and phlorizin only inhibited glycerate uptake to the extent that metabolism in the chloroplast was decreased by insufficient ATP. The concentration of glycerate accumulated in the chloroplast stroma was not significantly decreased. Chloroplasts isolated from young pea shoots (Pisum sativum, L. cv Massey Gem) were depleted of ATP by incubation with inorganic pyrophosphate or with ATP analogs. These treatments also decreased metabolism of glycerate but the actual concentration of glycerate accumulated in the chloroplast stroma was not decreased.

The results indicate that glycerate uptake is driven by ion gradients established across the chloroplast envelope in the light. ATP is not involved in the transport of glycerate into chloroplasts, being required only for the subsequent metabolism of glycerate in the chloroplast stroma. It is proposed that glycerate transport may be coupled to the proton gradient established in the light across the chloroplast envelope.

  相似文献   

16.
Exploitation of photosynthetic cells for the production of useful metabolites requires efficient photobioreactors. Many laboratory scale photobioreactors have been reported but most of them are extremely difficult to scale up. Furthermore, the use of open ponds and outdoor tubular photobioreactors is limited by the requirement for large spaces and the difficulty in maintaining sterile conditions. In view of this, we have designed and constructed an internally illuminated stirred tank photobioreactor. The photobioreactor is simple, heat sterilizable and mechanically agitated like the conventional stirred tank bioreactors. Furthermore, it can easily be scaled up while maintaining the light supply coefficient and thus the productivity constant. A device was installed for collecting solar light and distributing it inside the reactor through optical fibers. It was equipped with a light tracking sensor so that the lenses rotate with the position of the sun. This makes it possible to use solar light for photosynthetic cell cultivation in indoor photobioreactors. As a solution to the problems of night biomass loss and low productivity on cloudy days, an artificial light source was coupled with the solar light collecting device. A light intensity sensor monitors the solar light intensity and the artificial light is automatically switched on or off, depending on the solar light intensity. In this way, continuous light supply to the reactor is achieved by using solar light during sunny period, and artificial light at night and on cloudy days.  相似文献   

17.
A spatially explicit, reiterative algorithm (SERA) is presented and used to predict multiple aspects of plant population and community dynamics. Using simple physical principles and empirically derived relationships, SERA provides an analytical venue to test alternative hypotheses about individual functional traits governing ecological or evolutionary processes at the population or community level of complexity. Our analyses show that, as a result of competition for light and space, individual-level features scale up to produce species ensemble properties such as the scaling of self-thinning, size-dependent mortality, realistic size-frequency distributions, and a broad spectrum of empirically observed relationships for the species examined. SERA also predicts the competitive exclusion of conifers by angiosperms and the age at which reproductive maturity is achieved by different species. SERA serves as a null hypothesis by demonstrating that biologically complex phenomena, including widely observed scaling relationships at the species-ensemble level, can emerge from the operation of simple and transparent "rules" governing competition for space and light.  相似文献   

18.
Steffen KL  Palta JP 《Plant physiology》1989,91(4):1558-1561
The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24°C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1°C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1°C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12°C, was much more tolerant to high light and low temperature stress than tissue developed under 24°C conditions. Following the high light treatment, 24°C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12°C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24°C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling temperature than does S. tuberosum cv Red Pontiac, a frost-sensitive cultivated species.  相似文献   

19.
Sucrose phosphate synthase (SPS) activity was measured in extracts of maize (Zea mays L.) and soybean (Glycine max L. [Merr.]) leaves over a single day/night cycle. There was a 2- to 3-fold postillumination increase in extractable enzyme activity in maize leaves, whereas the activity of soybean SPS was only about 30% higher in extracts prepared from light- compared to dark-adapted leaves. Alterations in extractable maize leaf SPS activity correlated with light/dark transitions suggesting that the enzyme may be light modulated. Diurnal variations of extractable maize leaf SPS activity were also observed in a greenhouse experiment. A transition from high (light) to low (dark) extractable SPS activity occurred near the light compensation point for photosynthesis (about 20 micromole photons per square meter per second). Further increases in irradiance did not increase extractable SPS activity. Substrate affinities for uridine 5′-diphosphoglucose (Michaelis constant = 3.5 and 5.1 millimolar) and fructose-6 phosphate (half maximal concentration = 1.0 and 2.5 millimolar) were lower for partially purified SPS obtained from light compared to dark acclimated maize leaves. Light-induced changes in extractable SPS activity were stable for at least one column chromatography step. The above results indicate that light-induced changes in SPS activity may be important in controlling the photosynthetic production of sucrose.  相似文献   

20.
A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号