首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotic resistance may influence invasion success; however, the relative roles of species richness, functional or phylogenetic distance in predicting invasion success are not fully understood. We used biomass fraction of Chromolaena odorata, an invasive species in tropical and subtropical areas, as a measure of ‘invasion success’ in a series of artificial communities varying in species richness. Communities were constructed using species from Mexico (native range) or China (non‐native range). We found strong evidence of biotic resistance: species richness and community biomass were negatively related with invasion success; invader biomass was greater in plant communities from China than from Mexico. Harvesting time had a greater effect on invasion success in plant communities from China than on those from Mexico. Functional and phylogenetic distances both correlated with invasion success and more functionally distant communities were more easily invaded. The effects of plant‐soil fungi and plant allelochemical interactions on invasion success were species‐specific.  相似文献   

2.
Ecologists have long sought to understand the relationships among species diversity, community productivity and invasion by non‐native species. Here, four long‐term observational datasets were analyzed using repeated measures statistics to determine how plant species richness and community resource capture (i.e. productivity) influenced invasion. Multiple factors influenced the results, including the metric used to quantify invasion, interannual variation and spatial scale. Native richness was positively correlated with non‐native richness, but was usually negatively correlated with non‐native abundance, and these patterns were stronger at the larger spatial scale. Logistic regressions indicated that the probability of invasion was reduced both within and following years with high productivity, except at the desert grassland site where high productivity was associated with increased invasion. Our analysis suggests that while non‐natives were most likely to establish in species rich communities, their success was diminished by high resource capture by the resident community.  相似文献   

3.
Invasion of native habitats by alien or generalist species is recognized worldwide as one of the major causes behind species decline and extinction. One mechanism determining community invasibility, i.e. the susceptibility of a community to invasion, which has been supported by recent experimental studies, is species richness and functional diversity acting as barriers to invasion. We used Scandinavian semi-natural grasslands, exceptionally species-rich at small spatial scales, to examine this mechanism, using three grassland generalists and one alien species as experimental invaders. Removal of two putative functional groups, legumes and dominant non-legume forbs, had no effect on invasibility except a marginally insignificant effect of non-legume forb removal. The amount of removed biomass and original plot species richness had no effect on invasibility. Actually, invasibility was high already in the unmanipulated community, leading us to further examine the relationship between invasion and propagule pressure, i.e. the inflow of seeds into the community. Results from an additional experiment suggested that these species-rich grasslands are effectively open to invasion and that diversity may be immigration driven. Thus, species richness is no barrier to invasion. The high species diversity is probably in itself a result of the community being highly invasible, and species have accumulated at small scales during centuries of grassland management.  相似文献   

4.
Immigration rates of species into communities are widely understood to influence community diversity, which in turn is widely expected to influence the susceptibility of ecosystems to species invasion. For a given community, however, immigration processes may impact diversity by means of two separable components: the number of species represented in seed inputs and the density of seed per species. The independent effects of these components on plant species diversity and consequent rates of invasion are poorly understood. We constructed experimental plant communities through repeated seed additions to independently measure the effects of seed richness and seed density on the trajectory of species diversity during the development of annual plant communities. Because we sowed species not found in the immediate study area, we were able to assess the invasibility of the resulting communities by recording the rate of establishment of species from adjacent vegetation. Early in community development when species only weakly interacted, seed richness had a strong effect on community diversity whereas seed density had little effect. After the plants became established, the effect of seed richness on measured diversity strongly depended on seed density, and disappeared at the highest level of seed density. The ability of surrounding vegetation to invade the experimental communities was decreased by seed density but not by seed richness, primarily because the individual effects of a few sown species could explain the observed invasion rates. These results suggest that seed density is just as important as seed richness in the control of species diversity, and perhaps a more important determinant of community invasibility than seed richness in dynamic plant assemblages.  相似文献   

5.
A popular hypothesis is that species-rich systems are less susceptible to invasion. This hypothesis is based on the idea that species richness correlates with community saturation so that establishment by a new species is more difficult in saturated communities. Little attention has been focussed on how changing assumptions about the processes regulating species richness will alter community properties such as invasion resistance. Here, we simulate plant community assembly using four models that have different underlying coexistence mechanisms (and so differ in the amount of available niche space) and subject them to invasion. We created species richness gradients by comparing between models or by considering the output of a single model with different parameter values. We found that the relation between species richness and invasion resistance depends critically on the model considered and the cause of the species richness gradient. Overall, our results suggest that species richness does not necessarily correlate with saturation and is likely to be a poor predictor of invasion resistance. These results provide a possible explanation for the variety of outcomes reported in recent experimental and observational studies that examine the relationship between species richness and invasion resistance. We conclude that consideration of the processes regulating species richness is crucial for a successful understanding of invasion resistance along species richness gradients.  相似文献   

6.
Invasion should decline with species richness, yet the relationship is inconsistent. Species richness, however, is a product of species pool size and biotic filtering. Invasion may increase with richness if large species pools represent weaker environmental filters. Measuring species pool size and the proportion realised locally (completeness) may clarify diversity‐invasion relationships by separating environmental and biotic effects, especially if species’ life‐history stage and origin are accounted for. To test these relationships, we added seeds and transplants of 15 native and alien species into 29 grasslands. Species pool size and completeness explained more variation in invasion than richness alone. Although results varied between native and alien species, seed establishment and biotic resistance to transplants increased with species pool size, whereas transplant growth and biotic resistance to seeds increased with completeness. Consequently, species pools and completeness represent multiple independent processes affecting invasion; accounting for these processes improves our understanding of invasion.  相似文献   

7.
Vulnerability of natural communities to invasion by non‐native plants has been linked to factors such as recent disturbance and high resource availability, suggesting that recently restored habitats may be especially invasible. Because non‐native plants can interfere with restoration goals, monitoring programs should anticipate which sites are most susceptible to invasion and which species are likely to become problematic at a site. Restored sites of larger area and those with high rates of propagule input should have higher species richness of both natives and non‐natives, leading to a positive correlation between the two. However, in restored wetlands, urbanization, riparian landscape settings, and nitrogen enrichment likely favor non‐native relative to native species. We sampled 28 restored wetlands in Illinois, USA, modeled the responses of native richness, non‐native richness and non‐native cover to local and landscape predictors with linear regression, and modeled the presence/absence of 21 non‐native species with logistic regressions. Unexpectedly, native and non‐native richness were uncorrelated, suggesting different responses to environmental factors. Native richness declined with increasing available soil nitrogen and urbanization in the surrounding landscape. Non‐native richness, the richness of non‐natives relative to natives, and the likelihood of invasion by several individual invasive species decreased with increasing distance from the city of Chicago, likely in response to decreasing non‐native propagule pressure. Total cover of non‐natives, however, as well as cover by non‐native Phalaris arundinacea, increased with nitrogen availability. Our results indicate that although non‐native richness was better predicted by factors related to propagule pressure, non‐native species dominance was more closely related to local abiotic factors. Non‐native richness in restoration sites may be beyond the control of restoration practitioners, and furthermore, may be of limited relevance for conservation goals. In contrast, limiting the relative dominance of non‐natives should be a restoration priority and may be achievable through management of nutrient availability.  相似文献   

8.
Urban development and species invasion are two major global threats to biodiversity. These threats often co‐occur, as developed areas are more prone to species invasion. However, few empirical studies have tested if both factors affect biodiversity in similar ways. Here we study the individual and combined effects of urban development and plant invasion on the composition of arthropod communities. We assessed 36 paired invaded and non‐invaded sample plots, invaded by the plant Antigonon leptopus, with half of these pairs located in natural and the other half in developed land‐use types on the Caribbean island of St. Eustatius. We used several taxonomic and functional variables to describe community composition and diversity. Our results show that both urban development and A. leptopus invasion affected community composition, albeit in different ways. Development significantly increased species richness and exponential Shannon diversity, while invasion had no effect on these variables. However, invasion significantly increased arthropod abundance and caused biotic homogenization. Specifically, uninvaded arthropod communities were distinctly different in species composition between developed and natural sites, while they became undistinguishable after A. leptopus invasion. Moreover, functional variables were significantly affected by species invasion, but not by urban development. Invaded communities had higher community‐weighted mean body size and the feeding guild composition of invaded arthropod communities was characterized by the exceptional numbers of nectarivores, herbivores, and detritivores. With the exception of species richness and exponential Shannon diversity, invasion influenced four out of six response variables to a greater degree than urban development did. Hence, we can conclude that species invasion is not just a passenger of urban development but also a driver of change.  相似文献   

9.
Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large‐scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional data sets for fishes in river and stream reaches, we ask two questions: (1) does a negative relationship exist between native and non‐native species richness and (2) do non‐native species originate from higher diversity systems. A negative relationship between native and non‐native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non‐native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species‐rich systems inhibit establishment of generalist non‐native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively unimpacted by human actions, and may explain the conflicting relationship between native and non‐native species richness found at different spatial scales.  相似文献   

10.
Ecosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. We assess the vascular plant species richness as well as the number and percentage of endemic species and non‐native species systematically along three elevational gradients covering large parts of the climatic range of La Palma, Canary Islands. Species richness was negatively correlated with elevation, while the percentage of Canary endemic species showed a positive relationship. However, the percentage of Canary–Madeira endemics did not show a relationship with elevation. Non‐native species richness (indicating invasion) peaked at 500 m elevation and showed a consistent decline until about 1,200 m elevation. Above that limit, no non‐native species were present in the studied elevational gradients. Ecological, anthropogenic, and spatial filters control richness, diversification, and invasion with elevation. With increase in elevation, richness decreases due to species–area relationships. Ecological limitations of native ruderal species related to anthropogenic pressure are in line with the absence of non‐native species from high elevations indicating directional ecological filtering. Increase in ecological isolation with elevation drives diversification and thus increased percentages of Canary endemics. The best preserved eastern transect, including mature laurel forests, is an exception. The high percentage of Canary–Madeira endemics indicates the cloud forest's environmental uniqueness—and thus ecological isolation—beyond the Macaronesian islands.  相似文献   

11.
Removal experiments are useful tools for assessing two important aspects of plant community invasion: (1) resistance to invasion and (2) recovery after invasive species removal. We discuss the potential of such experiments based on a brief systematic review of the literature on community resistance, as measured by invasibility after removal of resident species (reduction of taxonomic/functional richness), and on community recovery, as measured by resident community response after invasive species removal. We found 62 research articles, most of them related to invasive species removal. Few studies used removals to test biotic resistance, despite the importance of resident removals for identifying community components that play key roles in the often‐controversial invasion resistance hypotheses. Furthermore, appropriate experimental controls were rarely used, which would allow separation of the effect of local species extinction from that of disturbance. We hope this review stimulates plant ecologists to adopt removal experiments for studying invasion processes.  相似文献   

12.
Invasive alien plant species in China: regional distribution patterns   总被引:5,自引:0,他引:5  
Plant invasions have been attracting increasing attention from ecologists because of their worldwide environmental impacts and huge economic costs. Research on the characteristics of the recipient regions is essential for understanding the process of plant invasion. However, few previous studies on invasibility of habitats include social factors, although human activities are critical in the process of plant invasion. China is a vast country with high plant species diversity and a long history of introduction of exotic plant species and is particularly vulnerable to invasive plant species. Alien plant species are widespread in the country. Therefore, the study of invasive plants in China is urgent in practice and theoretically important for developing invasion ecology. For the present study, 126 species were selected to represent the major invasive plant species in China. We then collected data on their species richness in 31 provincial administrative units of China and performed Spearman rank correlations between species richness and possible natural and socio‐economic factors. We found that socio‐economic factors, such as human density and GDP, correlated positively with the species richness of invasive plants in China. In conjunction with the natural and socio‐economic correlations in the study of regional distribution pattern of the major invasive plants, we discussed the factors influencing the regional distribution pattern of the major invasive plants in China. We suggest that native plant species richness was mainly determined by the natural conditions of the regions, while invasive species richness was influenced by natural conditions and human disturbance together.  相似文献   

13.
Jeremy W. Fox 《Oikos》2008,117(8):1153-1164
When do initial conditions, which reflect the assembly history of a community, affect the final community state? Comparative field studies and recent theory suggest that initial conditions matter at high productivity, because uninvasible alternate stable states and assembly cycles are more likely at high productivity. However, this prediction and the mechanisms behind it have not been tested experimentally. An alternative hypothesis is that initial conditions are relatively unimportant, and that communities generally are comprised of species with appropriate traits, which might vary with productivity. I assembled communities of protists and rotifers in laboratory microcosms from a species‐rich, trophically‐diverse species pool using all possible combinations of two initial conditions and four productivity levels. After communities approached their final states, invasions by the species that initially failed to persist tested the invasibility of those final states and tested for assembly cycles. I also examined how local (within‐microcosm) diversity and regional diversity (total species richness of all microcosms of a given productivity level) varied with productivity. Comparative field work has used such scale‐dependent diversity–productivity relationships as evidence for effects of assembly history. Productivity had a modest effect on final pre‐invasion species composition, while initial conditions had a very weak effect. Most invasions failed, and the frequency of successful invasions and of post‐invasion extinctions did not vary with productivity. Instead, species that were present most frequently pre‐invasion were also the most successful invaders, and the least‐likely species to go extinct post‐invasion. Local and regional richness did not vary substantially with productivity. Overall, the results suggest that final communities are predictably comprised of species with appropriate traits, and are not an unpredictable outcome of initial conditions.  相似文献   

14.
Questions: How does invasion affect old‐field seed bank species richness, composition and density? How consistent are these effects across sites? Does the soil seed bank match vegetation structure in old‐fields? Location: Menorca, Balearic Islands, Spain, western Mediterranean basin. Methods: We monitored seed germination in soils from old‐fields that were both uninvaded and invaded (legacy effect) by the annual geophyte Oxalis pes‐caprae. We also added O. pes‐caprae bulbs to uninvaded soils to test O. pes‐caprae interference with seedling emergence (competitive effect). We compared species composition in the seed bank with that of the vegetation. Results: Species richness in the seed bank and in the vegetation was not significantly different between invaded and uninvaded areas. Uninvaded areas did not have larger seed banks than invaded areas. More seedlings, especially of geophytes, emerged when O. pes‐caprae bulbs were added to the soil. Species similarity between invaded and uninvaded areas was higher in the seed bank (74%) than in the vegetation (49%). Differences in species composition were as important as differences among sites. The degree of species similarity between the seed bank and the vegetation was very low (17%). Conclusions: Despite invasion by O. pes‐caprae not affecting species richness, the variation in the seed bank species composition in invaded and uninvaded areas, and the differences between the seed bank and the mature vegetation, highlights that even if the invader could be eradicated the vegetation could not be restored back to the exact composition as found in uninvaded areas.  相似文献   

15.
We investigated how ecological realism might impact the outcome of three experimental manipulations of species richness to determine whether the patterns and the mechanisms underlying richness–variability relationships differ as ecological communities are increasingly exposed to external forces that may drive richness–variability patterns in nature. To test for such an effect, we conducted experiments using rock pool meio‐invertebrate communities housed in three experimental venues: controlled laboratory microcosms, artificially constructed rock pools in the field, and naturally occurring rock pools in the field. Our results showed that experimental venue can have a strong effect on the outcome of richness manipulation experiments. As ecological realism increased, the strength of the relationship between species richness and community variability declined from 32.9% in the laboratory microcosms to 16.8% in the artificial pools to no effect of species richness on community variability in the natural rock pools. The determinants of community variability also differed as ecological realism increased. In laboratory microcosms, community variability was driven solely by mechanisms related to increasing species richness. In artificial rock pools, community variability was driven by a combination of direct and indirect environmental factors as well as mechanisms related to increasing species richness. In the natural rock pools community variability was independent of species richness and was only related to environmental factors. In summary, we found that stabilizing mechanisms associated with species interactions were influential in establishing species richness–variability relations only in the less realistic experimental venues (the laboratory microcosms and the artificial rock pools in the field), and that these mechanisms diminished in importance as ecological realism and complexity of the experimental venue increased. Our results suggest that the effects of diversity might be more difficult to detect in natural systems due to the combined effects of biotic and abiotic forcing, which can mask our ability to detect richness effects.  相似文献   

16.
Aim To examine native‐exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location Illinois, USA. Methods We analysed the native‐exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman’s correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard’s and Simpson’s similarity indices. Results At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native‐exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard’s and Simpson’s indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions Our study demonstrated a clear shift from a positive to a negative native‐exotic species richness relationship from larger to smaller spatial scales. The negative native‐exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native‐exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion.  相似文献   

17.
We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north‐eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26–36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant–plant interactions. Heat stress and warming‐induced litter accumulation are potential explanations for the species’ responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.  相似文献   

18.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

19.
The biotic resistance hypothesis predicts that diverse native communities are more resistant to invasion. However, past studies vary in their support for this hypothesis due to an apparent contradiction between experimental studies, which support biotic resistance, and observational studies, which find that native and non‐native species richness are positively related at broad scales (small‐scale studies are more variable). Here, we present a novel analysis of the biotic resistance hypothesis using 24 456 observations of plant richness spanning four community types and seven ecoregions of the United States. Non‐native plant occurrence was negatively related to native plant richness across all community types and ecoregions, although the strength of biotic resistance varied across different ecological, anthropogenic and climatic contexts. Our results strongly support the biotic resistance hypothesis, thus reconciling differences between experimental and observational studies and providing evidence for the shared benefits between invasive species management and native biodiversity conservation.  相似文献   

20.
Plant invasions are known to have negative impacts on native plant communities, yet their influence on higher trophic levels has not been well documented. Past studies investigating the effects of invasive plants on herbivores and carnivores have been largely observational in nature and thus lack the ability to tease apart whether differences are a cause or consequence of the invasion. In addition, understanding how plant traits and plant species compositions change in invaded habitats may increase our ability to predict when and where invasive plants will have effects that cascade to animals. To assess effects on arthropods, we experimentally introduced a non‐native plant (Microstegium vimineum, Japanese stiltgrass) in a community re‐assembly experiment. We also investigated possible mechanisms through which the invader could affect associated arthropods, including changes in native plant species richness, above‐ground plant biomass, light availability and vegetation height. In experimentally invaded plots, arthropod abundance was reduced by 39%, and species richness declined by 19%. Carnivores experienced greater reductions in abundance than herbivores (61% vs 31% reduction). Arthropod composition significantly diverged between experimentally invaded and control plots, and particular species belonging to the abundant families Aphididae (aphids), Formicidae (ants) and Phalacridae (shining flower beetles) contributed the most to compositional differences. Among the mechanisms we investigated, only the reduction in native plant species richness caused by invasion was strongly correlated with total arthropod abundance and richness. In sum, our results demonstrate negative impacts of M. vimineum invasion on higher trophic levels and suggest that these effects occur, in part, indirectly through invader‐mediated reductions in the richness of the native plant community. The particularly strong response of carnivores suggests that plant invasion could reduce top–down control of herbivorous species for native plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号