首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Rho family GTPases are GDP/GTP-regulated molecular switches that regulate signaling pathways controlling diverse cellular processes. Wrch-1 was identified as a Wnt-1 regulated Cdc42 homolog, upregulated by Wnt1 signaling in Wnt1-transformed mouse mammary cells, and was able to promote formation of filopodia and activate the PAK serine/threonine kinase. Wrch-1 shares significant sequence and functional similarity with the Cdc42 small GTPase. However, Wrch-1 possesses a unique N-terminal 46 amino acid sequence extension that contains putative Src homology 3 (SH3) domain-interacting motifs. We determined the contribution of the N terminus to Wrch-1 regulation and activity. We observed that Wrch-1 possesses properties that distinguish it from Cdc42 and other Rho family GTPases. Unlike Cdc42, Wrch-1 possesses an extremely rapid, intrinsic guanine nucleotide exchange activity. Although the N terminus did not influence GTPase or GDP/GTP cycling activity in vitro, N-terminal truncation of Wrch-1 enhanced its ability to interact with and activate PAK and to cause growth transformation. The N terminus associated with the Grb2 SH3 domain-containing adaptor protein, and this association increased the levels of active Wrch-1 in cells. We propose that Grb2 overcomes N-terminal negative regulation to promote Wrch-1 effector interaction. Thus, Wrch-1 exhibits an atypical model of regulation not seen in other Rho family GTPases.  相似文献   

2.
The actinin-associated LIM protein (ALP) genes belong to the PDZ/LIM protein family which is characterized by the presence of both a PDZ and a LIM domain. The ALP subfamily in mammals has four members: ALP, Elfin, Mystique and RIL. In this study, we have annotated and cloned the zebrafish ALP gene family and identified a zebrafish-specific fifth member of the family, the alp-like gene. We compared the zebrafish sequences to their human and mouse orthologues. A phylogenetic analysis based on the amino acid sequences showed the overall high degree of conservation within the family. We describe here the expression patterns for all five ALP family genes during zebrafish development. Whole mount in situ hybridization results revealed common and distinct expression patterns for the five genes. With the exception of elfin, all genes were expressed as maternal RNAs at early developmental stages. Gene expression for all of them appeared regulated and localized in specific regions at the eight different developmental stages studied. Expression for all five genes was observed in the central nervous system (CNS), which led us to further investigate brain-specific expression in sections of embryos at 2 days of development. In summary, we identified the zebrafish orthologues of the ALP family and determined their gene expression patterns during zebrafish embryogenesis. Finally, we compare our results to the limited expression data available for this gene family during mammalian development.  相似文献   

3.
Evidence has been obtained that indicates the presence of small 22 kDa GTP-binding Rho proteins through ADP-ribosylation by Clostridium botulinum C3 exotoxin in Mucor circinelloides. Rho protein was detected at all stages of growth studied. During polarized growth, both under aerobic conditions and during the yeast-mycelia transition, the radiolabeling of the [32P]ADP-ribosylated protein increased when tube formation occurred and decreased as the hyphae branched. However, when Mucor grew isotropically, the Rho protein band was thick and its intensity did not vary significantly even after bud formation and separation of daughter cells. Crude extracts of yeast and mycelial cells exhibited a broad 22 kDa band of the [32P]ADP-ribosylated Rho protein that was resolved into a protein with a pI of 6.0, after two-dimensional electrophoresis, corresponding to the Rho1p homolog. Furthermore, [32P]ADP-ribosylated Rho protein from soluble and particulate extracts of multipolarized mycelial cells obtained from the yeast-mycelia transition was separated into two proteins with pI of 6.0 and 6.4, respectively, after two-dimensional electrophoresis. These correspond to the Rho1p and Rho3p homologs, respectively. Therefore, our results show that an increase in Rho accumulation is associated with polarized growth.  相似文献   

4.
5.
The Rho GTPases Rac1 and Cdc42 have been implicated in the regulation of axon outgrowth and guidance. However, the downstream effector pathways through which these GTPases exert their effects on axon development are not well characterized. Here, we report that axon outgrowth defects within specific subsets of motoneurons expressing constitutively active Drosophila Rac1 largely persist even with the addition of an effector-loop mutation to Rac1 that disrupts its ability to bind to p21-activated kinase (Pak) and other Cdc42/Rac1 interactive-binding (CRIB)-motif effector proteins. While hyperactivation of Pak itself does not lead to axon outgrowth defects as when Rac1 is constitutively activated, live analysis reveals that it can alter filopodial activity within specific subsets of neurons similar to constitutive activation of Cdc42. Moreover, we show that the axon guidance defects induced by constitutive activation of Cdc42 persist even in the absence of Pak activity. Our results suggest that (1) Rac1 controls axon outgrowth through downstream effector pathways distinct from Pak, (2) Cdc42 controls axon guidance through both Pak and other CRIB effectors, and (3) Pak's primary contribution to in vivo axon development is to regulate filopodial dynamics that influence growth cone guidance.  相似文献   

6.
Highly pathogenic bacteria, including Yersinia, Salmonella, E. coli and Clostridia, produce an amazing array of virulence factors that target Rho proteins. These pathogens exploit and/or impair many aspects of Rho protein activities by activating or inhibiting these key molecular switches. Here, we describe examples illustrating how modulation of Rho protein activity is the underlying molecular mechanism used by pathogens to disrupt host epithelial/endothelial barriers, paralyze immune cell migration and phagocytic functions, invade epithelial cells, replicate, and form reservoirs or disseminate in epithelia. Remarkably, emerging evidence points to the capacity of target cells to not only perceive the imbalance of Rho activity induced by virulence factors but also to respond by stimulating the production of anti-microbial responses that alert the host to the pathogenic threat. Furthermore, toxins that activate Rho proteins have been extremely useful in revealing the exquisite cellular regulations of these GTPases, notably by the ubiquitin and proteasome system. Finally, a number of studies indicate that toxins targeting Rho proteins have great potential in the development of new therapeutic tools.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR)-interacting protein, CFTR-associated ligand (CAL) down-regulates total and cell surface CFTR by targeting CFTR for degradation in the lysosome. Here, we report that a Rho family small GTPase TC10 interacts with CAL. This interaction specifically up-regulates CFTR protein expression. Co-expression of the constitutively active form, TC10Q75L, increases total and cell surface CFTR in a dose-dependent fashion. Moreover, co-expression of the dominant-negative mutant TC10T31N causes a dose-dependent reduction in mature CFTR. The effect of TC10 is independent of the level of CFTR expression, because a similar effect was observed in a stable cell line that expresses one-tenth of CFTR. Co-expression of TC10Q75L did not have a similar effect on the expression of plasma membrane proteins such as Frizzled-3 and Pr-cadherin or cytosolic proteins such as tubulin and green fluorescent protein. TC10Q75L also did not have a similar effect on the vesicular stomatitis virus glycoprotein. Co-expression of constitutively active and dominant-negative forms of Cdc42 or RhoA did not affect CFTR expression in a manner similar to TC10, indicating that the effect of TC10 is unique within the Rho family. Metabolic pulse-chase experiments show that TC10 did not affect CFTR maturation, suggesting that it exerts its effects on the mature CFTR. Importantly, TC10Q75L reverses CAL-mediated CFTR degradation, suggesting that TC10Q75L inhibits CAL-mediated degradation of CFTR. TC10Q75L does not operate by reducing CAL protein expression or its ability to form dimers or interact with CFTR. Interestingly, the expression of TC10Q75L causes a dramatic redistribution of CAL from the juxtanuclear region to the plasma membrane where the two molecules overlap. These data suggest that TC10 regulates both total and plasma membrane CFTR expression by interacting with CAL. The GTP-bound form of TC10 directs the trafficking of CFTR from the juxtanuclear region to the secretory pathway toward the plasma membrane, away from CAL-mediated degradation of CFTR in the lysosome.  相似文献   

8.
9.
Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein–protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295–304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many 1H(N), 13C, and 15N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N–H correlations in the 1H–15N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77–83 and residues 127–131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1 switch II region remained un-assigned, the switch I region could be more fully assigned compared to Cdc42 and Rac1. The NMR assignment and structure analysis reported here provides a robust basis for future study of the binding between Rnd1 and other proteins, as well as for further studies of the molecular function of this unusual GTPase.  相似文献   

10.
The Rif GTPase is a recent addition to small Rho GTPase family; it shares low homology with other members in the family and evolutionarily parallels with the development of vertebrates. Rif has the conserved Rho GTPase domain structures and cycles between a GDP-bound inactive form and a GTP-bound active form. In its active form, Rif signals through multiple downstream effectors. In the present review, our aim is to summarize the current information about the Rif effectors and how Rif remodels actin cytoskeleton in many aspects.  相似文献   

11.
Fmlns belong to the Formin family, catalysts of linear actin polymerization with mostly unknown roles in vivo. In cell culture Fmnls are involved in cell migration and adhesion and the formation of different types of protrusions including filopodia and blebs, suggesting important roles during development. Moreover, Fmnls can act downstream of Rac and Cdc42, mediators of cytoskeletal changes as targets of important pathways required for shaping tissues. The zebrafish genome encodes five Fmnls. Here we report their tissue specific expression patterns during early development and pharyngula stages. The fmnls show overlapping and distinct expression patterns, which suggest that they could regulate similar processes during development, but may also have independent functions. In particular, we find a strong maternal contribution of all fmnls, but distinct expression patterns in the developing brain eye, ear, heart and vascular system.  相似文献   

12.
The involvement of Rho GTPases in major aspects of cancer development, such as cell proliferation, apoptosis, cell polarity, adhesion, migration, and invasion, have recently been attracting increasing attention. In this review, we have summarized the current findings in the literature, and we discuss the participation of the Rho GTPase members RhoA, Rac1, and Cdc42 in the development of colorectal cancer, the second most lethal neoplasia worldwide. First, we present an overview of the mechanisms of Rho GTPase regulation and the impact that regulator proteins exert on GTPase signaling. Second, we focus on the participation of Rho GTPases as modulators of colorectal cancer development. Third, we emphasize the involvement of activation and expression alterations of Rho GTPases in events associated with cancer progression, such as loss of cell-cell adhesion, proliferation, migration, and invasion. Finally, we highlight the potential use of novel anticancer drugs targeting specific components of the Rho GTPase signaling pathway with antineoplastic activity in this cancer type.  相似文献   

13.
The Rho small GTPase: functions in health and disease   总被引:2,自引:0,他引:2  
  相似文献   

14.

Background

Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions.

Methodology/Principal Findings

We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes).

Conclusions

The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation.  相似文献   

15.
Zhang S  Zhou X  Lang RA  Guo F 《PloS one》2012,7(3):e33773
RhoA is a member of the Rho family small GTPases that are implicated in various cell functions including proliferation and survival. However, the physiological role of RhoA in vivo remains largely unknown. Here, we deleted RhoA in the B cell and hematopoietic stem cell (HSC) populations in RhoA(flox/flox) mice with CD19 and Mx promoter-driven Cre expression, respectively. Deletion of RhoA by CD19(Cre/+) significantly blocked B cell development in spleen, leading to a marked reduction in the number of transitional, marginal zone, and follicular B cells. Surprisingly, neither B cell proliferation in response to either LPS or B cell receptor (BCR) engagement nor B cell survival rate in vivo was affected by RhoA deletion. Furthermore, RhoA(-/-) B cells, like control cells, were rescued from apoptosis by BCR crosslinking in vitro. In contrast, RhoA deficiency led to a defect in B cell activating factor (BAFF)-mediated B cell survival that was associated with a dampened expression of BAFF receptor and a loss of BAFF-mediated Akt activation. Finally, HSC deletion of RhoA by Mx-Cre severely reduced proB/preB and immature B cell populations in bone marrow while common lymphoid progenitors were increased, indicating that RhoA is also required for B cell progenitor/precursor differentiation. Taken together, our results uncover an important role for RhoA at multiple stages of B cell development.  相似文献   

16.
17.
To identify the key molecules that regulate differentiation of hematopoietic cells, we carried out retrovirus-mediated functional screening for cDNAs whose expression suppresses IL-6-induced differentiation of mouse myeloid leukemic M1 cells. From this screening, we obtained a full length cDNA encoding a mouse homologue of human MgcRacGAP. Overexpression of the anti-sense MgcRacGAP profoundly inhibited IL-6-induced macrophage-differentiation of M1 cells. On the other hand, overexpression of the full-length form of MgcRacGAP alone enhanced macrophage differentiation of M1 cells in response to IL-6, and induced macrophage differentiation of HL-60 leukemic cells. To determine how this protein regulates differentiation and proliferation, an antibody against MgcRacGAP was prepared. Immunohistochemical studies revealed that MgcRacGAP mainly localizes in the nucleus in interphase, accumulates on the mitotic spindle in metaphase, and is condensed in the midbody during cytokinesis. Overexpression of an N-terminal domain deletion mutant, which lacks the ability to localize to the midbody through association with tubulins, or a GAP-inactive mutant resulted in the formation of multinucleated cells in HeLa cells as well as in hemopoietic cells. Interestingly, MgcRacGAP in the midbody was phosphorylated probably on serine and threonine residues. These results indicate that MgcRacGAP regulates cytokinesis and cellular differentiation as a regulator of Rho family of GTPase and suggest that this process is controlled by some serine/threonine kinases.  相似文献   

18.
MicroRNAs (miRs) are short non-coding RNAs that fine-tune the regulation of gene expression to coordinate a wide range of biological processes. Because of their role in the regulation of gene expression, miRs are essential players in development by acting on cell fate determination and progression towards cell differentiation and are increasingly relevant to human health and disease. Although the zebrafish Danio rerio is a major model for studies of development, genetics, physiology, evolution, and human biology, the annotation of zebrafish miR-producing genes remains limited. In the present work, we report deep sequencing data of zebrafish small RNAs from brain, heart, testis, and ovary. Results provide evidence for the expression of 56 un-annotated mir genes and 248 un-annotated mature strands, increasing the number of zebrafish mir genes over those already deposited in miRBase by 16% and the number of mature sequences by 63%. We also describe the existence of three pairs of mirror-mir genes and two mirtron genes, genetic features previously undescribed in non-mammalian vertebrates. This report provides information that substantially increases our knowledge of the zebrafish miRNome and will benefit the entire miR community.  相似文献   

19.
Bordetella dermonecrotic toxin (DNT) is a virulence factor produced by bacteria belonging to the genus Bordetella. The toxin possesses novel transglutaminase activity that catalyzes polyamination or deamidation of the small GTPases of the Rho family. The modified GTPases loose their GTP hydrolyzing activity, function as a constitutive active molecule, and continuously transduce signals to downstream effectors, which mediate the consequent phenotypes of cells intoxicated by DNT. A dynamin-dependent endocytosis is required for the toxin to be internalized into cells although it is unlikely transported to deep organelles such as the Golgi apparatus or the ER. Several lines of evidence show that the toxin undergoes proteolytic cleavage by furin or furin-like protease probably in the early endosome, and then escapes into the cytoplasm to reach the GTPase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号