首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This review examines the basal chordate, amphioxus, as a simple model for providing insights into the development and evolution of the vertebrates, with which it shares many features, including a pharynx perforated with gill slits, a dorsal nerve cord, segmented muscles, and a notochord. Conversely, amphioxus is simpler than vertebrates in lacking neural crest and paired cephalic sensory organs. Amphioxus embryos are less derived than those of vertebrates, because it lacks large quantities of yolk and/or extra-embryonic tissues. Embryogenesis involves only a simple folding of tissue layers. In addition, the amphioxus genome lacks the large-scale gene duplications of vertebrates. However, in spite of the comparative simplicity of amphioxus, its developmental mechanisms are proving to be highly conserved with those of vertebrates. Thus, studies of amphioxus development can shed light on similar, but more complex, development of vertebrates. Such studies are especially interesting for their insights into the genetic basis of craniofacial birth defects in humans.  相似文献   

2.
The widely accepted notion that two whole-genome duplications occurred during early vertebrate evolution (the 2R hypothesis) stems from the fact that vertebrates often possess several genes corresponding to a single invertebrate homolog. However the number of genes predicted by the Human Genome Project is less than twice as many as in the Drosophila melanogaster or Caenorhabditis elegans genomes. This ratio could be explained by two rounds of genome duplication followed by extensive gene loss, by a single genome duplication, by sequential local duplications, or by a combination of any of the above. The traditional method used to distinguish between these possibilities is to reconstruct the phylogenetic relationships of vertebrate genes to their invertebrate orthologs; ratios of invertebrate-to-vertebrate counterparts are then used to infer the number of gene duplication events. The lancelet, amphioxus, is the closest living invertebrate relative of the vertebrates, and unlike protostomes such as flies or nematodes, is therefore the most appropriate outgroup for understanding the genomic composition of the last common ancestor of all vertebrates. We analyzed the relationships of all available amphioxus genes to their vertebrate homologs. In most cases, one to three vertebrate genes are orthologous to each amphioxus gene (median number=2). Clearly this result, and those of previous studies using this approach, cannot distinguish between alternative scenarios of chordate genome expansion. We conclude that phylogenetic analyses alone will never be sufficient to determine whether genome duplication(s) occurred during early chordate evolution, and argue that a "phylogenomic" approach, which compares paralogous clusters of linked genes from complete amphioxus and human genome sequences, will be required if the pattern and process of early chordate genome evolution is ever to be reconstructed.  相似文献   

3.
文昌鱼特异的基因倍增   总被引:1,自引:0,他引:1  
王蔚  宿兵  王义权 《遗传》2005,27(1):143-149
进化生物学和发育生物学的结合产生了一门新兴学科——进化发育生物学,近年来该领域研究取得了丰硕的成果。头索动物文昌鱼是现存生物中最近似于脊椎动物直接祖先的生物,在与脊椎动物分化后形态改变很小,其基因组未曾经历大规模的基因组倍增,在一定程度上反映了脊椎动物祖先型基因组的特征,但在漫长的独立进化历程中基因组自身还是经历了一些变化。本文介绍了在几例在文昌鱼支系中独立发生的基因倍增事件(Hox; Evx; HNF-3; Calmodulin-like),有力地揭示了文昌鱼虽然与脊椎动物直接祖先极其接近,但其基因组有其自身特性,不能简单地将之等同于脊椎动物直接祖先。Abstract: The union of the two complementary disciplines, developmental biology and evolutionary biology resulted in a new division of evolutionary developmental biology, namely “Evo-Devo”. Recently, the research on this field has been fruitful in understanding the origin and development of vertebrates. The cephalochordate amphioxus, which remains in relatively invariant morphology since the divergence from the vertebrate lineage, is the closest living relative to vertebrates. The vertebrate-like simple body plan and preduplicative genome provide amphioxus genes the privilege to serve as key landmark to understand morphological evolution. However, the amphioxus genome has not escaped evolution. In this paper several examples of independent gene (Hox; Evx; HNF-3 and Calmodulin-like) duplications in the cephalochordate lineage were summarized. These particularities and oddities remind the fact that amphioxus is not an immediate ancestor of the vertebrates but ‘only’ the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

4.
Transposable elements (TEs) are main components of eukaryote genomes-up to 50% in some vertebrates-which can replicate and jump to new locations. TEs contribute to shape genome evolution, actively by creating new genes (or exons) or altering gene expression as consequence of transposition, and passively by serving as illegitimate recombinational hotspots. Analysis of amphioxus TEs can help to shed light on the ancestral status of chordate TEs and to understand genome evolution in cephalochordates and early vertebrates. The Branchiostoma floridae genome project has revealed that TE content constitutes ~28% of the amphioxus genome. Amphioxus TEs belong to more than 30 superfamilies, which represent a higher diversity than in vertebrates. Amphioxus TE families are also highly heterogeneous as generally none of their members are drastically more abundant than others, and none of the TEs seems to have suffered any massive expansion. Such diversity and heterogeneity make the amphioxus genome not to be particularly prone to major evolutionary changes mediated by TEs, and therefore favoring genomic evolutionary stasis. Comparison of TE diversity and content between amphioxus and vertebrates allows us to discuss whether or not a burst of TEs happened after the two rounds of whole-genome duplication that occurred during early vertebrate evolution.  相似文献   

5.
6.
The new discipline of Evolutionary Developmental Biology (Evo-Devo) is facing the fascinating paradox of explaining morphological evolution using conserved pieces or genes to build divergent animals. The cephalochordate amphioxus is the closest living relative to the vertebrates, with a simple, chordate body plan, and a genome directly descended from the ancestor prior to the genome-wide duplications that occurred close to the origin of vertebrates. Amphioxus morphology may have remained relatively invariant since the divergence from the vertebrate lineage, but the amphioxus genome has not escaped evolution. We report the isolation of a second Emx gene (AmphiEmxB) arising from an independent duplication in the amphioxus genome. We also argue that a tandem duplication probably occurred in the Posterior part of the Hox cluster in amphioxus, giving rise to AmphiHox14, and discuss the structure of the chordate and vertebrate ancestral clusters. Also, a tandem duplication of Evx in the amphioxus lineage produced a prototypical Evx gene (AmphiEvxA) and a divergent gene (AmphiEvxB), no longer involved in typical Evx functions. These examples of specific gene duplications in amphioxus, and other previously reported duplications summarized here, emphasize the fact that amphioxus is not the ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

7.
One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.  相似文献   

8.
Chemosensation is the primary sensory modality in almost all metazoans. The vertebrate olfactory receptor genes exist as tandem clusters in the genome, so that identifying their evolutionary origin would be useful for understanding the expansion of the sensory world in relation to a large-scale genomic duplication event in a lineage leading to the vertebrates. In this study, I characterized a novel GPCR (G-protein-coupled receptor) gene-coding locus from the amphioxus genome. The genomic DNA contains an intronless ORF whose deduced amino acid sequence encodes a seven-transmembrane protein with some amino acid residues characteristic of vertebrate olfactory receptors (ORs). Surveying counterparts in the Ciona intestinalis (Asidiacea, Urochordata) genome by querying BLAST programs against the Ciona genomic DNA sequence database resulted in the identification of a remotely related gene. In situ hybridization analysis labeled primary sensory neurons in the rostral epithelium of amphioxus adults. Based on these findings, together with comparison of the developmental gene expression between amphioxus and vertebrates, I postulate that chemoreceptive primary sensory neurons in the rostrum are an ancient cell population traceable at least as far back in phylogeny as the common ancestor of amphioxus and vertebrates.  相似文献   

9.
Amphioxus is an extant species closest to the ancestry of vertebrates.Observation of microRNA(miRNA)distribution of amphioxus would lend some hints for evolutionary research of vertebrates.In this study,using the publicly available scaffold data of the Florida amphioxus(Branchiostoma floridae)genome,we screened and characterized homologs of miRNAs that had been identified in other species.In total,68 pieces of such homologs were obtained and classified into 33 families.Most of these miRNAs were distributed as clusters in genome.Inter-species comparison showed that many miRNAs,which had been thought as vertebrate-or mammal-specific before,were also present in amphioxus,while some miRNAs that had been considered as protostome-specific before also existed in amphioxus.Compared with ciona,amphioxus had an apparent miRNA gene expansion,but phylogenetic analysis showed that the duplicated miRNAs or clusters of amphioxus had a higher homology level than those duplicated ones in vertebrates.  相似文献   

10.
As the sister group to vertebrates, amphioxus is consistently used as a model of genome evolution for understanding the invertebrate/vertebrate transition. The amphioxus genome has not undergone massive duplications like those in the vertebrates or disruptive rearrangements like in the genome of Ciona, a urochordate, making it an ideal evolutionary model. Transposable elements have been linked to many genomic evolutionary changes including increased genome size, modified gene expression, massive gene rearrangements, and possibly intron evolution. Despite their importance in genome evolution, few previous examples of transposable elements have been identified in amphioxus. We report five novel Miniature Inverted-repeat Transposable Elements (MITEs) identified by an analysis of amphioxus DNA sequence, which we have named LanceleTn-1, LanceleTn-2, LanceleTn-3a, LanceleTn-3b and LanceleTn-4. Several of the LanceleTn elements were identified in the amphioxus ParaHox cluster, and we suggest these have had important implications for the evolution of this highly conserved gene cluster. The estimated high copy numbers of these elements implies that MITEs are probably the most abundant type of mobile element in amphioxus, and are thus likely to have been of fundamental importance in shaping the evolution of the amphioxus genome.  相似文献   

11.
Vertebrate Hairy genes are highly pleiotropic and have been implicated in numerous functions, such as somitogenesis, neurogenesis and endocrine tissue development. In order to gain insight into the timing of acquisition of these roles by the Hairy subfamily, we have cloned and studied the expression pattern of the Hairy gene(s) in amphioxus. The cephalochordate amphioxus is widely believed to be the living invertebrate more closely related to vertebrates, the genome of which has not undergone the massive gene duplications that took place early during vertebrate evolution. Surprisingly, we have isolated eight Hairy genes from the 'pre-duplicative' amphioxus genome. In situ hybridisation on amphioxus embryos showed that Hairy genes had experienced a process of subfunctionalisation that is predicted in the DDC model (for duplication-degeneration-complementation). Only the summation of four out of the eight Amphi-Hairy genes expression resembles the expression pattern of vertebrate Hairy genes, i.e. in the central nervous system, presomitic mesoderm, somites, notochord and gut. In addition, Amphi-Hairy genes expression suggest that amphioxus early somites are molecularly prefigured in an anteroposterior sequence in the dorsolateral wall of the archenteron, and the presence of a midbrain/hindbrain boundary. The expansion of the amphioxus Hairy subfamily request for caution when deducing the evolutionary history of a gene family in chordates based in the singularity of the amphioxus genome. Amphioxus may resemble the ancestor of the vertebrates, but it is not the ancestor, only its closest living relative, a privileged position that should not assume the freezing of its genome.  相似文献   

12.
The origin of the vertebrates was a major event in the evolution of morphological diversity and the genetic mechanisms responsible for this diversity, once purely theoretical, can now be approached experimentally in the genome era. With a prototypical chordate genome, vertebrate-like development and simple morphology, amphioxus provides the appropriate model for investigating the origin of the vertebrates. Comparative genomics is revealing that both conservation and divergence of genes and cis-regulatory elements involved in developmental regulatory networks are required to shape different animal body plans. This article reviews the cis-regulatory studies performed in amphioxus, the discovery of conserved non-coding elements (CNEs) across the metazoans and the examination of amphioxus CNEs. Emerging ideas on the evolution of CNEs after large-scale genome duplication events and the state of cephalochordate genomics are also discussed.  相似文献   

13.
Transposable elements of about 300 bp, termed "short interspersed nucleotide elements or SINEs are common in eukaryotes. However, Alu elements, SINEs containing restriction sites for the AluI enzyme, have been known only from primates. Here I report the first SINE found in the genome of the cephalochordate, amphioxus. It is an Alu element of 375 bp that does not share substantial identity with any genomic sequences in vertebrates. It was identified because it was located in the FoxD regulatory region in a cosmid derived from one individual, but absent from the two FoxD alleles of BACs from a second individual. However, searches of sequences of BACs and genomic traces from this second individual gave an estimate of 50-100 copies in the amphioxus genome. The finding of an Alu element in amphioxus raises the question of whether Alu elements in amphioxus and primates arose by convergent evolution or by inheritance from a common ancestor. Genome-wide analyses of transposable elements in amphioxus and other chordates such as tunicates, agnathans and cartilaginous fishes could well provide the answer.  相似文献   

14.
Vertebrates originated in the lower Cambrian. Their diversification and morphological innovations have been attributed to large-scale gene or genome duplications at the origin of the group. These duplications are predicted to have occurred in two rounds, the "2R" hypothesis, or they may have occurred in one genome duplication plus many segmental duplications, although these hypotheses are disputed. Under such models, most genes that are duplicated in all vertebrates should have originated during the same period. Previous work has shown that indeed duplications started after the speciation between vertebrates and the closest invertebrate, amphioxus, but have not set a clear ending. Consideration of chordate phylogeny immediately shows the key position of cartilaginous vertebrates (Chondrichthyes) to answer this question. Did gene duplications occur as frequently during the 45 Myr between the cartilaginous/bony vertebrate split and the fish/tetrapode split as in the previous approximately 100 Myr? Although the time interval is relatively short, it is crucial to understanding the events at the origin of vertebrates. By a systematic appraisal of gene phylogenies, we show that significantly more duplications occurred before than after the cartilaginous/bony vertebrate split. Our results support rounds of gene or genome duplications during a limited period of early vertebrate evolution and allow a better characterization of these events.  相似文献   

15.
The discovery in invertebrates of ciliary photoreceptor cells and ciliary (c)-opsins established that at least two of the three elements that characterize the vertebrate photoreceptor system were already present before vertebrate evolution. However, the origin of the third element, a series of biochemical reactions known as the "retinoid cycle," remained uncertain. To understand the evolution of the retinoid cycle, I have searched for the genetic machinery of the cycle in invertebrate genomes, with special emphasis on the cephalochordate amphioxus. Amphioxus is closely related to vertebrates, has a fairly prototypical genome, and possesses ciliary photoreceptor cells and c-opsins. Phylogenetic and structural analyses of the amphioxus sequences related with the vertebrate machinery do not support a function of amphioxus proteins in chromophore regeneration but suggest that the genetic machinery of the retinoid cycle arose in vertebrates due to duplications of ancestral nonvisual genes. These results favor the hypothesis that the retinoid cycle machinery was a functional innovation of the primitive vertebrate eye.  相似文献   

16.
The origin of chordates and the consequent genesis of vertebrates were major events in natural history. The amphioxus (lancelet) is now recognised as the closest extant relative to the stem chordate and is the only living invertebrate that retains a vertebrate‐like development and body plan through its lifespan, despite more than 500 million years of independent evolution from the stem vertebrate. The inspiring data coming from its recently sequenced genome confirms that amphioxus has a prototypical chordate genome with respect to gene content and structure, and even chromosomal organisation. Pushed by joint efforts of amphioxus researchers, amphioxus is now entering a new era, namely its maturation as a laboratory model, through the availability of a large amount of molecular data and the advent of experimental manipulation of the embryo. These two facts may well serve to illuminate the hidden secrets of the genetic changes that generated, among other vertebrates, ourselves.  相似文献   

17.
18.
The cephalochordate, amphioxus, is phylogenetically placed at the most primitive position in the chordate clade. Despite many studies on the endocrine system of amphioxus, definitive evidence has not been reported for the presence an endocrine system comparable to the pituitary-gonadal axis, which is important in the regulation of reproduction in vertebrates. Recent genome analyses in the amphioxus, Branchiostoma floridae, showed that it does not have any pituitary hormone genes except the thyrostimulin gene. Thyrostimulin is a heterodimeric glycoprotein hormone consisting of α and β subunits, and is present in various organs of vertebrates. Analyses of a phylogenetic tree and a synteny suggest that amphioxus' thyrostimulin is an ancestral type of the glycoprotein hormones in chordates. In addition, genes for sex steroidogenic enzymes belonging to the CYP family were found in the genome sequences. The conversion pathway of sex steroids from cholesterol to estrogen, androgen, and major sex steroids was also identified in the gonads of amphioxus in vitro. Furthermore, we demonstrated the expression of genes encoding thyrostimulin and sex steroidogenic enzymes by an in situ hybridization technique. Here, we discuss the evolution of hormones and reproductive functions in the neuroendocrine control system of chordates.  相似文献   

19.
Evo-devo is a young disciplin, which aims to explain the morphological evolution of organisms through developmental mechanisms and genes networks. A major question within this discipline is the origin of vertebrates. It seems now admitted that vertebrates derive from an invertebrate chordate ancestor. Several models among living chordate representatives are used today to answer this question. The small world of evo-evo interested in the emergence of vertebrates is ebullient about the advent of several totally sequenced genomes allowing comparative analyses to become evermore reliable. Furthermore "non classical" models are developed which can be submitted to refined developmental analysis. One of these is amphioxus (genus Branchyostoma), "a peaceful anchory fillet to illuminate chordate evolution" (Garcia-Fernandez, 2006a, b). The features of this model are described in this review.  相似文献   

20.
During vertebrate development, the paraxial mesoderm becomes segmented, forming somites that will give rise to dermis, axial skeleton and skeletal muscles. Although recently challenged, the "clock and wavefront" model for somitogenesis explains how interactions between several cell-cell communication pathways, including the FGF, RA, Wnt and Notch signals, control the formation of these bilateral symmetric blocks. In the cephalochordate amphioxus, which belongs to the chordate phylum together with tunicates and vertebrates, the dorsal paraxial mesendoderm also periodically forms somites, although this process is asymmetric and extends along the whole body. It has been previously shown that the formation of the most anterior somites in amphioxus is dependent upon FGF signalling. However, the signals controlling somitogenesis during posterior elongation in amphioxus are still unknown. Here we show that, contrary to vertebrates, RA and FGF signals act independently during posterior elongation and that they are not mandatory for posterior somites to form. Moreover, we show that RA is not able to buffer the left/right asymmetry machinery that is controlled through the asymmetric expression of Nodal pathway actors. Our results give new insights into the evolution of the somitogenesis process in chordates. They suggest that RA and FGF pathways have acquired specific functions in the control of somitogenesis in vertebrates. We propose that the "clock and wavefront" system was selected specifically in vertebrates in parallel to the development of more complex somite-derived structures but that it was not required for somitogenesis in the ancestor of chordates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号