首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recruiting matrix proteins with a peroxisomal targeting signal type 2 (PTS2) to the peroxisomal membrane requires species-specific factors. In Saccharomyces cerevisiae, the PTS2 receptor Pex7p acts in concert with the redundant Pex18p/Pex21p, whereas in Yarrowia lipolytica, Pex20p might unite the function of both S. cerevisiae peroxins. Herein, the genome of the filamentous fungus Neurospora crassa was analyzed for peroxin-encoding genes. We identified a set of 18 peroxins that resembles that of Y. lipolytica rather than that of S. cerevisiae. Interestingly, proteins homologous to both S. cerevisiae Pex7p and Y. lipolytica Pex20p exist in N. crassa. We report on the isolation of these PTS2-specific peroxins and demonstrate that NcPex20p can substitute for S. cerevisiae Pex18p/Pex21p, but not for ScPex7p. Like Pex18p, NcPex20p did not bind PTS2 protein or the docking proteins in the absence of ScPex7p. Rather, NcPex20p was required before docking to form an import-competent complex of cargo-loaded PTS2 receptors. NcPex7p did not functionally replace yeast Pex7p, probably because the N. crassa PTS2 receptor failed to associate with Pex18p/Pex21p. However, once NcPex7p and NcPex20p had been coexpressed, it proved possible to replace yeast Pex7p. Pex20p and Pex18p/Pex21p are therefore true orthologues, both of which are in need of Pex7p for PTS2 protein import.  相似文献   

2.
Pex13p is the putative docking protein for peroxisomal targeting signal 1 (PTS1)-dependent protein import into peroxisomes. Pex14p interacts with both the PTS1- and PTS2-receptor and may represent the point of convergence of the PTS1- and PTS2-dependent protein import pathways. We report the involvement of Pex13p in peroxisomal import of PTS2-containing proteins. Like Pex14p, Pex13p not only interacts with the PTS1-receptor Pex5p, but also with the PTS2-receptor Pex7p; however, this association may be direct or indirect. In support of distinct peroxisomal binding sites for Pex7p, the Pex7p/Pex13p and Pex7p/ Pex14p complexes can form independently. Genetic evidence for the interaction of Pex7p and Pex13p is provided by the observation that overexpression of Pex13p suppresses a loss of function mutant of Pex7p. Accordingly, we conclude that Pex7p and Pex13p functionally interact during PTS2-dependent protein import into peroxisomes. NH2-terminal regions of Pex13p are required for its interaction with the PTS2-receptor while the COOH-terminal SH3 domain alone is sufficient to mediate its interaction with the PTS1-receptor. Reinvestigation of the topology revealed both termini of Pex13p to be oriented towards the cytosol. We also found Pex13p to be required for peroxisomal association of Pex14p, yet the SH3 domain of Pex13p may not provide the only binding site for Pex14p at the peroxisomal membrane.  相似文献   

3.
Pex18p is constitutively degraded during peroxisome biogenesis   总被引:1,自引:0,他引:1  
Pex18p and Pex21p are structurally related yeast peroxins (proteins required for peroxisome biogenesis) that are partially redundant in function. One or the other is essential for the import into peroxisomes of proteins with type 2 peroxisomal targeting sequences (PTS2). These sequences bind to the soluble PTS2 receptor, Pex7p, which in turn binds to Pex18p (or Pex21p or possibly both). Here we show that Pex18p is constitutively degraded with a half-time of less than 10 min in wild-type Saccharomyces cerevisiae. This degradation probably occurs in proteasomes, because it requires the related ubiquitin-conjugating enzymes Ubc4p and Ubc5p and occurs normally in a mutant lacking the Pep4p vacuolar protease. The turnover of Pex18p stops, and Pex18p accumulates to a much higher than normal abundance in pex mutants in which the import of all peroxisomal matrix proteins is blocked. This includes mutants that lack peroxins involved in receptor docking at the membrane (Deltapex13 or Deltapex14), a mutant that lacks the peroxisomal member of the E2 family of ubiquitin-conjugating enzymes (Deltapex4), and others (Deltapex1). This stabilization in a variety of pex mutants indicates that Pex18p turnover is associated with its normal function. A Pex18p-Pex7p complex is detected by immunoprecipitation in wild type cells, and its abundance increases considerably in the Deltapex14 peroxisome biogenesis mutant. Cells that lack Pex7p fail to stabilize and accumulate Pex18p, indicating an important role for complex formation in the stabilization. Mono- and diubiquitinated forms of Pex18p are detected in wild-type cells, and there is no Pex18p turnover in a yeast doa4 mutant in which ubiquitin homeostasis is defective. These data represent, to the best of our knowledge, the first instance of an organelle biogenesis factor that is degraded constitutively and rapidly.  相似文献   

4.
PEX5 functions as an import receptor for proteins with the type-1 peroxisomal targeting signal (PTS1). Although PEX5 is not involved in the import of PTS2-targeted proteins in yeast, it is essential for PTS2 protein import in mammalian cells. Human cells generate two isoforms of PEX5 through alternative splicing, PEX5S and PEX5L, and PEX5L contains an additional insert 37 amino acids long. Only one isoform, PEX5L, is involved in PTS2 protein import, and PEX5L physically interacts with PEX7, the import receptor for PTS2-containing proteins. In this report we map the regions of human PEX5L involved in PTS2 protein import, PEX7 interaction, and targeting to peroxisomes. These studies revealed that amino acids 1-230 of PEX5L are required for PTS2 protein import, amino acids 191-222 are sufficient for PEX7 interaction, and amino acids 1-214 are sufficient for targeting to peroxisomes. We also identified a 21-amino acid-long peptide motif of PEX5L, amino acids 209-229, that overlaps the regions sufficient for full PTS2 rescue activity and PEX7 interaction and is shared by Saccharomyces cerevisiae Pex18p and Pex21p, two yeast peroxins that act only in PTS2 protein import in yeast. A mutation in PEX5 that changes a conserved serine of this motif abrogates PTS2 protein import in mammalian cells and reduces the interaction of PEX5L and PEX7 in vitro. This peptide motif also lies within regions of Pex18p and Pex21p that interact with yeast PEX7. Based on these and other results, we propose that mammalian PEX5L may have acquired some of the functions that yeast Pex18p and/or Pex21p perform in PTS2 protein import. This hypothesis may explain the essential role of PEX5L in PTS2 protein import in mammalian cells and its lack of importance for PTS2 protein import in yeast.  相似文献   

5.
Within the extended receptor cycle of peroxisomal matrix import, the function of the import receptor Pex5p comprises cargo recognition and transport. While the C-terminal half (Pex5p-C) is responsible for PTS1 binding, the contribution of the N-terminal half of Pex5p (Pex5p-N) to the receptor cycle has been less clear. Here we demonstrate, using different techniques, that in Saccharomyces cerevisiae Pex5p-N alone facilitates the import of the major matrix protein Fox1p. This finding suggests that Pex5p-N is sufficient for receptor docking and cargo transport into peroxisomes. Moreover, we found that Pex5p-N can be functionally replaced by Pex18p, one of two auxiliary proteins of the PTS2 import pathway. A chimeric protein consisting of Pex18p (without its Pex7p binding site) fused to Pex5p-C is able to partially restore PTS1 protein import in a PEX5 deletion strain. On the basis of these results, we propose that the auxiliary proteins of the PTS2 import pathway fulfill roles similar to those of the N-terminal half of Pex5p in the PTS1 import pathway.  相似文献   

6.
In mammals, two isoforms of the peroxisome targeting signal (PTS) type 1 receptor Pex5p, i.e. Pex5pS and Pex5pL with an internal 37-amino acid insertion, have previously been identified. Expression of either type of Pex5p complements the impaired PTS1 import in Chinese hamster ovary pex5 mutants, but only Pex5pL can rescue the PTS2 import defect noted in a subgroup of pex5 mutants such as ZP105. In this work, we found that Pex5pL directly interacts with the PTS2 receptor Pex7p, carrying its cargo PTS2 protein in the cytosol. Pex5pL, but not Pex5pS, mediated the binding of PTS2 protein to Pex14p by translocating Pex7p, demonstrating that Pex5pL plays a pivotal role in peroxisomal PTS2 import. Pex5p was localized mostly in the cytosol in wild-type CHO-K1 and Pex14p-deficient mutant cells, whereas it accumulated in the peroxisomal remnants in cell mutants defective in Pex13p or the RING family peroxins such as Pex2p and Pex12p. Furthermore, overexpression of Pex14p, but not Pex10p, Pex12p, or Pex13p, caused accumulation of Pex5p in peroxisomal membranes, with concomitant interference with PTS1 and PTS2 import. Therefore, Pex5p carrying the cargoes most likely docks with the initial site (Pex14p) in a putative import machinery, subsequently translocating to other components such as Pex13p, Pex2p, Pex10p, and Pex12p.  相似文献   

7.
Two isoforms of the peroxisomal targeting signal type 1 (PTS1) receptor, termed Pex5pS and (37-amino-acid-longer) Pex5pL, are expressed in mammals. Pex5pL transports PTS1 proteins and Pex7p-PTS2 cargo complexes to the initial Pex5p-docking site, Pex14p, on peroxisome membranes, while Pex5pS translocates only PTS1 cargoes. Here we report functional Pex5p domains responsible for interaction with peroxins Pex7p, Pex13p, and Pex14p. An N-terminal half, such as Pex5pL(1-243), comprising amino acid residues 1 to 243, bound to Pex7p, Pex13p, and Pex14p and was sufficient for restoring the impaired PTS2 import of pex5 cell mutants, while the C-terminal tetratricopeptide repeat motifs were required for PTS1 binding. N-terminal Pex5p possessed multiple Pex14p-binding sites. Alanine-scanning analysis of the highly conserved seven (six in Pex5pS) pentapeptide WXXXF/Y motifs residing at the N-terminal region indicated that these motifs were essential for the interaction of Pex5p with Pex14p and Pex13p. Moreover, mutation of several WXXXF/Y motifs did not affect the PTS import-restoring activity of Pex5p, implying that the binding of Pex14p to all of the WXXXF/Y sites was not a prerequisite for the translocation of Pex5p-cargo complexes. Pex5p bound to Pex13p at the N-terminal part, not to the C-terminal SH3 region, via WXXXF/Y motifs 2 to 4. PTS1 and PTS2 import required the interaction of Pex5p with Pex14p but not with Pex13p, while Pex5p binding to Pex13p was essential for import of catalase with PTS1-like signal KANL. Pex5p recruited PTS1 proteins to Pex14p but not to Pex13p. Pex14p and Pex13p formed a complex with PTS1-loaded Pex5p but dissociated in the presence of cargo-unloaded Pex5p, implying that PTS cargoes are released from Pex5p at a step downstream of Pex14p and upstream of Pex13p. Thus, Pex14p and Pex13p very likely form mutually and temporally distinct subcomplexes involved in peroxisomal matrix protein import.  相似文献   

8.
We have identified ScPex18p and ScPex21p, two novel S. cerevisiae peroxins required for protein targeting via the PTS2 branch of peroxisomal biogenesis. Targeting by this pathway is known to involve the interaction of oligopeptide PTS2 signals with Pex7p, the PTS2 receptor. Pex7p function is conserved between yeasts and humans, with defects in the human protein causing rhizomelic chondrodysplasia punctata (RCDP), a severe, lethal peroxisome biogenesis disorder characterized by aberrant targeting of several PTS2 peroxisomal proteins, but uncertainty remains about the subcellular localization of this receptor. Previously, we have reported that ScPex7p resides predominantly in the peroxisomal matrix, suggesting that it may function as a highly unusual intraorganellar import receptor, and the data presented in this paper identify Pex18p and Pex21p as key components in the targeting of Pex7p to peroxisomes. They each interact specifically with Pex7p both in two-hybrid analyses and in vitro. In cells lacking both Pex18p and Pex21p, Pex7p remains cytosolic and PTS2 targeting is completely abolished. Pex18p and Pex21p are weakly homologous to each other and display partial functional redundancy, indicating that they constitute a two-member peroxin family specifically required for Pex7p and PTS2 targeting.  相似文献   

9.
Membrane association of the cycling peroxisome import receptor Pex5p   总被引:1,自引:0,他引:1  
Peroxisomal proteins carrying a peroxisome targeting signal type 1 (PTS1) are recognized in the cytosol by the cycling import receptor Pex5p. The receptor-cargo complex docks at the peroxisomal membrane where it associates with multimeric protein complexes, referred to as the docking and RING finger complexes. Here we have identified regions within the Saccharomyces cerevisiae Pex5p sequence that interconnect the receptor-cargo complex with the docking complex. Site-directed mutagenesis of the conserved tryptophan residue within a reverse WXXXF motif abolished two-hybrid binding with the N-terminal half of Pex14p. In combination with an additional mutation introduced into the Pex13p-binding site, we generated a Pex5p mutant defective in a stable association not only with the docking complex but also with the RING finger peroxins at the membrane. Surprisingly, PTS1 proteins are still imported into peroxisomes in these mutant cells. Because these mutations had no significant effect on the membrane binding properties of Pex5p, we examined yeast and human Pex5p for intrinsic lipid binding activity. In vitro analyses demonstrated that both proteins have the potential to insert spontaneously into phospholipid membranes. Altogether, these data strongly suggest that a translocation-competent state of the PTS1 receptor enters the membrane via protein-lipid interactions before it tightly associates with other peroxins.  相似文献   

10.
Pex14p is a member of the protein linkage map of Pex5p.   总被引:15,自引:3,他引:12       下载免费PDF全文
To identify members of the translocation machinery for peroxisomal proteins, we made use of the two-hybrid system to establish a protein linkage map centered around Pex5p from Saccharomyces cerevisiae, the receptor for the C-terminal peroxisomal targeting signal (PTS1). Among the five interaction partners identified, Pex14p was found to be induced under conditions allowing peroxisome proliferation. Deletion of the corresponding gene resulted in the inability of yeast cells to grow on oleate as well as the absence of peroxisomal structures. The PEX14 gene product of approximately 38 kDa was biochemically and ultrastructurally demonstrated to be a peroxisomal membrane protein, despite the lack of a membrane-spanning domain. This protein was shown to interact with itself, with Pex13p and with both PTS receptors, Pex5p and Pex7p, indicating a central function for the import of peroxisomal matrix proteins, either as a docking protein or as a releasing factor at the organellar membrane.  相似文献   

11.
In the present study, we investigated molecular mechanisms underlying the import of peroxisome-targeting signal type 2 (PTS2) proteins into peroxisomes. Purified Chinese hamster Pex7p that had been expressed in an Sf9/baculovirus system was biologically active in several assays such as those for PTS2 binding and assessing the restoration of the impaired PTS2 protein import in Chinese hamster ovary (CHO) pex7 mutant ZPG207. Pex7p was eluted as a monomer in gel filtration chromatography. Moreover, the mutation of the highly conserved cysteine residue suggested to be involved in the dimer formation did not affect the complementing activity in ZPG207 cells. Together, Pex7p more likely functions as a monomer. Together with PTS1 protein, the Pex7p-PTS2 protein complex was bound to Pex5pL, the longer form of Pex5p, which was prerequisite for the translocation of Pex7p-PTS2 protein complexes. Pex5pL-(Pex7p-PTS2 protein) complexes were detectable in wild-type CHO-K1 cells and were apparently more stable in pex14 CHO cells deficient in the entry site of the matrix proteins, whereas only the Pex7p-PTS2 protein complex was discernible in a Pex5pL-defective pex5 CHO mutant. Pex7p-PTS2 proteins bound to Pex14p via Pex5pL. In contrast, PTS2 protein-bound Pex7p as well as Pex7p directly and equally interacted with Pex13p, implying that the PTS2 cargo may be released at Pex13p. Furthermore, we detected the Pex13p complexes likewise formed with Pex5pL-bound Pex7p-PTS2 proteins. Thus, the Pex7p-mediated PTS2 protein import shares most of the steps with the Pex5p-dependent PTS1 import machinery but is likely distinct at the cargo-releasing stage.  相似文献   

12.
Current evidence favors a cycling receptor model for the import of peroxisomal matrix proteins. The yeast Pex14 protein together with Pex13p and Pex17p form the docking subcomplex at the peroxisomal membrane and interact in this cycle with both soluble import receptors Pex5p and Pex7p. In a first step of a structure-function analysis of Saccharomyces cerevisiae Pex14p, we mapped its binding sites with both receptors. Using the yeast two-hybrid system and pull-down assays, we showed that Pex5p directly interacts with two separate regions of ScPex14p, amino acid residues 1-58 and 235-308. The latter binding site at the C terminus of ScPex14p overlaps with a binding site of Pex7p at amino acid residues 235-325. The functional assessment of these two binding sites of ScPex14p with the peroxisomal targeting signal receptors indicates that they have distinct roles. Deletion of the N-terminal 58 amino acids caused a partial defect of matrix protein import in pex14delta cells expressing the Pex14-(59-341)-p fragment; however, it did not lead to a pex phenotype. In contrast, truncation of the C-terminal 106 amino acids of ScPex14p completely blocked this process. On the basis of these and other published data, we propose that the C terminus of Pex14p contains the actual docking site and discuss the possibility that the N terminus could be involved in a Pex5p-Pex14p association inside the peroxisomal membrane.  相似文献   

13.
Most soluble proteins targeted to the peroxisomal matrix contain a C‐terminal peroxisome targeting signal type 1 (PTS1) or an N‐terminal PTS2 that is recognized by the receptors Pex5p and Pex7p, respectively. These receptors cycle between the cytosol and peroxisome and back again for multiple rounds of cargo delivery to the peroxisome. A small number of peroxisomal matrix proteins, including all six isozymes of peroxisomal fatty acyl‐CoA oxidase (Aox) of the yeast Yarrowia lipolytica, contain neither a PTS1 nor a PTS2. Pex20p has been shown to function as a co‐receptor for Pex7p in the import of PTS2 cargo into peroxisomes. Here we show that cells of Y. lipolytica deleted for the PEX20 gene fail to import not only the PTS2‐containing protein 3‐ketoacyl‐CoA thiolase (Pot1p) but also the non‐PTS1/non‐PTS2 Aox isozymes. Pex20p binds directly to Aox isozymes Aox3p and Aox5p, which requires the C‐terminal Wxxx(F/Y) motif of Pex20p. A W411G mutation in the C‐terminal Wxxx(F/Y) motif causes Aox isozymes to be mislocalized to the cytosol. Pex20p interacts physically with members of the peroxisomal import docking complex, Pex13p and Pex14p. Our results are consistent with a role for Pex20p as the receptor for import of the non‐PTS1/non‐PTS2 Aox isozymes into peroxisomes.  相似文献   

14.
We report the characterization of ScPex8p, which is essential for peroxisomal biogenesis in Saccharomyces cerevisiae. Cells lacking Pex8p are characterized by the presence of peroxisomal membrane ghosts and mislocalization of peroxisomal matrix proteins of the PTS1 and PTS2 variety to the cytosol. Pex8p is tightly associated with the lumenal face of the peroxisomal membrane. Consistent with its intraperoxisomal localization, Pex8p contains a peroxisomal targeting signal 1, and it interacts with the PTS1 receptor Pex5p. However, the Pex5p/Pex8p association is also observed upon deletion of the PTS1 of Pex8p, suggesting that Pex8p contains a second binding site for Pex5p. The pex8Delta mutant phenotype and the observed PTS1-independent interaction with the PTS1 receptor suggest that Pex8p is involved in protein import into the peroxisomal matrix. In pex8Delta cells, the PTS1 and PTS2 receptor still associate with membrane bound components of the protein import machinery, supporting the assumption that the Pex8p function in protein translocation follows the docking event.  相似文献   

15.
Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery.  相似文献   

16.
Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD+ salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions.  相似文献   

17.
The 41-kDa membrane-anchored peroxin Pex14p functions as the peroxisome targeting signal (PTS) receptor-mediated, initial import site for matrix proteins. We here identify the functional domains of Pex14p involved in the assembly of import site subcomplexes. The minimal region of Pex14p required for restoring impaired protein import in pex14 Chinese hamster ovary cell mutant lies at residues 21-260 in the primary sequence. A highly conserved N-terminal region, encompassing residues 21-70, interacts with the PTS1 receptor Pex5p, Pex13p, and Pex19p that is essential for membrane biogenesis. N-terminal residues 21-140, including a hydrophobic segment at 110-138, function as a topogenic sequence. Site-directed mutagenesis, size fractionation, and chemical cross-linking analyses demonstrate that the coiled-coil domain at residues 156-197 regulates homodimerization of Pex14p. Moreover, AXXXA and GXXXG motifs in the transmembrane segment mediate homomeric oligomerization of Pex14p, giving rise to assembly of high molecular mass complexes and thereby assuring Pex13p-dependent localization of Pex14p to peroxisomes. Pex5p, Pex13p, and Pex19p bind to Pex14p homo-oligomers with different molecular masses, whereas cargo-unloaded Pex5p apparently disassembles Pex14p homo-oligomers. Thus, Pex14p most likely forms several distinct peroxin complexes involved in peroxisomal matrix protein import.  相似文献   

18.
We isolated peroxisome biogenesis-defective Chinese hamster ovary cell mutants from TKaG2 cells, wild-type CHO-K1 cells transformed with two cDNAs encoding rat Pex2p and peroxisome targeting signal (PTS) type 2-tagged green fluorescent protein, by the 9-(1'-pyrene)nonanol/UV selection method. Ten mutant clones showed cytosolic PTS2-green fluorescent protein, indicative of a defect in PTS2 import, and were classified in five complementation groups, i.e. pex1, pex2, pex5, pex14, and group A. One PEX5-deficient mutant, ZPG231, showed a novel phenotype: PTS2 proteins in the cytosol, but PTS1 proteins and catalase in peroxisomes. In ZPG231, two isoforms of the PTS1 receptor Pex5p, a shorter Pex5pS and a longer Pex5pL, were expressed as in wild-type cells, but possessed the missense point mutation S214F in both Pex5p isoforms, termed Pex5pS-S214F and Pex5pL-S214F, respectively. The S214F mutation was located only one amino acid upstream of the Pex5pL-specific 37-amino acid insertion site. Pex5pS-S214F and Pex5pL-S214F interacted with peroxisomal proteins, including PTS1 protein, catalase, and Pex14p, as efficiently as normal Pex5p. In contrast, the S214F mutation severely affected the binding of Pex5pL to the PTS2 receptor Pex7p. Expression of Pex5pL-S214F in pex5 cell mutants defective in PTS1 and PTS2 transport restored peroxisomal import of PTS1, but not PTS2. Together, the results indicate that ZPG231 is the first cell mutant providing evidence that disruption of the Pex5pL-Pex7p interaction completely abolishes PTS2 import in mammals.  相似文献   

19.
20.
Proteins harboring peroxisome-targeting signal type-2 (PTS2) are recognized in the cytosol by mobile PTS2 receptor Pex7p and associate with a longer isoform Pex5pL of the PTS1 receptor. Trimeric PTS2 protein-Pex7p-Pex5pL complexes are translocated to peroxisomes in mammalian cells. However, it remains unclear whether Pex5pL and Pex7p are sufficient cytosolic components in transporting of PTS2 proteins to peroxisomes. Here, we construct a semi-intact cell import system to define the cytosolic components required for the peroxisomal PTS2 protein import and show that the PTS2 pre-import complexes comprising Pex7p, Pex5p, and Hsc70 isolated from the cytosol of pex14 Chinese hamster ovary cell mutant ZP161 is import-competent. PTS2 reporter proteins are transported to peroxisomes by recombinant Pex7p and Pex5pL in semi-intact cells devoid of the cytosol. Furthermore, PTS2 proteins are translocated to peroxisomes in the presence of a non-hydrolyzable ATP analogue, adenylyl imidodiphosphate, and N-ethylmaleimide, suggesting that ATP-dependent chaperones including Hsc70 are dispensable for PTS2 protein import. Taken together, we suggest that Pex7p and Pex5pL are the minimal cytosolic factors in the transport of PTS2 proteins to peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号