共查询到20条相似文献,搜索用时 0 毫秒
1.
Determining the probability of fixation of beneficial mutations is critically important for building predictive models of adaptive evolution. Despite considerable theoretical work, models of fixation probability have stood untested for nearly a century. However, recent advances in experimental and theoretical techniques permit the development of models with testable predictions. We developed a new model for the probability of surviving genetic drift, a major component of fixation probability, for novel beneficial mutations in the fungus Aspergillus nidulans, based on the life-history characteristics of its colony growth on a solid surface. We tested the model by measuring the probability of surviving drift in 11 adapted strains introduced into wild-type populations of different densities. We found that the probability of surviving drift increased with mutant invasion fitness, and decreased with wild-type density, as expected. The model accurately predicted the survival probability for the majority of mutants, yielding one of the first direct tests of the extinction probability of beneficial mutations. 相似文献
2.
Paulo R. A. Campos Lindi M. Wahl 《Evolution; international journal of organic evolution》2010,64(7):1973-1983
The rate at which a population adapts to its environment is a cornerstone of evolutionary theory, and recent experimental advances in microbial populations have renewed interest in predicting and testing this rate. Efforts to understand the adaptation rate theoretically are complicated by high mutation rates, to both beneficial and deleterious mutations, and by the fact that beneficial mutations compete with each other in asexual populations (clonal interference). Testable predictions must also include the effects of population bottlenecks, repeated reductions in population size imposed by the experimental protocol. In this contribution, we integrate previous work that addresses each of these issues, developing an overall prediction for the adaptation rate that includes: beneficial mutations with probabilistically distributed effects, deleterious mutations of arbitrary effect, population bottlenecks, and clonal interference. 相似文献
3.
Twelve replicate populations of Escherichia coli have been evolving in the laboratory for >25 years and 60,000 generations. We analyzed bacteria from whole-population samples frozen every 500 generations through 20,000 generations for one well-studied population, called Ara−1. By tracking 42 known mutations in these samples, we reconstructed the history of this population’s genotypic evolution over this period. The evolutionary dynamics of Ara−1 show strong evidence of selective sweeps as well as clonal interference between competing lineages bearing different beneficial mutations. In some cases, sets of several mutations approached fixation simultaneously, often conveying no information about their order of origination; we present several possible explanations for the existence of these mutational cohorts. Against a backdrop of rapid selective sweeps both earlier and later, two genetically diverged clades coexisted for >6000 generations before one went extinct. In that time, many additional mutations arose in the clade that eventually prevailed. We show that the clades evolved a frequency-dependent interaction, which prevented the immediate competitive exclusion of either clade, but which collapsed as beneficial mutations accumulated in the clade that prevailed. Clonal interference and frequency dependence can occur even in the simplest microbial populations. Furthermore, frequency dependence may generate dynamics that extend the period of coexistence that would otherwise be sustained by clonal interference alone. 相似文献
4.
Maria Izabel A Cavassim Stig U Andersen Thomas Bataillon Mikkel Heide Schierup 《Molecular biology and evolution》2021,38(12):5480
Homologous recombination is expected to increase natural selection efficacy by decoupling the fate of beneficial and deleterious mutations and by readily creating new combinations of beneficial alleles. Here, we investigate how the proportion of amino acid substitutions fixed by adaptive evolution () depends on the recombination rate in bacteria. We analyze 3,086 core protein-coding sequences from 196 genomes belonging to five closely related species of the genus Rhizobium. These genes are found in all species and do not display any signs of introgression between species. We estimate using the site frequency spectrum (SFS) and divergence data for all pairs of species. We evaluate the impact of recombination within each species by dividing genes into three equally sized recombination classes based on their average level of intragenic linkage disequilibrium. We find that varies from 0.07 to 0.39 across species and is positively correlated with the level of recombination. This is both due to a higher estimated rate of adaptive evolution and a lower estimated rate of nonadaptive evolution, suggesting that recombination both increases the fixation probability of advantageous variants and decreases the probability of fixation of deleterious variants. Our results demonstrate that homologous recombination facilitates adaptive evolution measured by in the core genome of prokaryote species in agreement with studies in eukaryotes. 相似文献
5.
Marcus M. Dillon Nicholas P. Rouillard Brian Van Dam Romain Gallet Vaughn S. Cooper 《Evolution; international journal of organic evolution》2016,70(3):586-599
Beneficial mutations fuel adaptation by altering phenotypes that enhance the fit of organisms to their environment. However, the phenotypic effects of mutations often depend on ecological context, making the distribution of effects across multiple environments essential to understanding the true nature of beneficial mutations. Studies that address both the genetic basis and ecological consequences of adaptive mutations remain rare. Here, we characterize the direct and pleiotropic fitness effects of a collection of 21 first‐step beneficial mutants derived from naïve and adapted genotypes used in a long‐term experimental evolution of Escherichia coli. Whole‐genome sequencing was able to identify the majority of beneficial mutations. In contrast to previous studies, we find diverse fitness effects of mutations selected in a simple environment and few cases of genetic parallelism. The pleiotropic effects of these mutations were predominantly positive but some mutants were highly antagonistic in alternative environments. Further, the fitness effects of mutations derived from the adapted genotypes were dramatically reduced in nearly all environments. These findings suggest that many beneficial variants are accessible from a single point on the fitness landscape, and the fixation of alternative beneficial mutations may have dramatic consequences for niche breadth reduction via metabolic erosion. 相似文献
6.
In asexual populations, the rate of adaptation is basically limited by the frequency and properties of spontaneous beneficial mutations. Hence, knowledge of these mutational properties and how they are affected by particular evolutionary conditions is a precondition for understanding the process of adaptation. Here, we address how the rate of adaptation of asexual populations is limited by its population size and mutation rate, as well as by two factors affecting the fraction of mutations that confer a benefit, i.e. the initial adaptedness of the population and the variability of the environment. These factors both influence which mutations are likely to occur, as well as the probability that they will ultimately contribute to adaptation. We attempt to separate the consequences of these basic population features in terms of their effect on the rate of adaptation by using results from evolution experiments with microorganisms. 相似文献
7.
Valerie J. Morley Paul E. Turner 《Evolution; international journal of organic evolution》2017,71(4):872-883
Understanding the dynamics of molecular adaptation is a fundamental goal of evolutionary biology. While adaptation to constant environments has been well characterized, the effects of environmental complexity remain seldom studied. One simple but understudied factor is the rate of environmental change. Here we used experimental evolution with RNA viruses to investigate whether evolutionary dynamics varied based on the rate of environmental turnover. We used whole‐genome next‐generation sequencing to characterize evolutionary dynamics in virus populations adapting to a sudden versus gradual shift onto a novel host cell type. In support of theoretical models, we found that when populations evolved in response to a sudden environmental change, mutations of large beneficial effect tended to fix early, followed by mutations of smaller beneficial effect; as predicted, this pattern broke down in response to a gradual environmental change. Early mutational steps were highly parallel across replicate populations in both treatments. The fixation of single mutations was less common than sweeps of associated “cohorts” of mutations, and this pattern intensified when the environment changed gradually. Additionally, clonal interference appeared stronger in response to a gradual change. Our results suggest that the rate of environmental change is an important determinant of evolutionary dynamics in asexual populations. 相似文献
8.
Gifford DR Schoustra SE Kassen R 《Evolution; international journal of organic evolution》2011,65(11):3070-3078
Adaptation involves the successive substitution of beneficial mutations by selection, a process known as an adaptive walk. Gradualist models of adaptation, which assume that all mutations are small relative to the distance to a fitness optimum, predict that adaptive walks should be longer when the founding genotype is less well adapted. More recent work modeling adaptation as a sequence of moves in phenotype or genotype space predicts, by contrast, much shorter adaptive walks irrespective of the fitness of the founding genotype. Here, we provide what is, to the best of our knowledge, the first direct test of these alternative models, measuring the length of adaptive walks in evolving lineages of fungus that differ initially in fitness. Contrary to the gradualist view, we show that the length of adaptive walks in the fungus Aspergillus nidulans is insensitive to starting fitness and involves just two mutations on average. This arises because poorly adapted populations tend to fix mutations of larger average effect than those of better-adapted populations. Our results suggest that the length of adaptive walks may be independent of the fitness of the founding genotype and, moreover, that poorly adapted populations can quickly adapt to novel environments. 相似文献
9.
Understanding adaptation in changing environments is an important topic in evolutionary genetics, especially in the light of climatic and environmental change. In this work, we study one of the most fundamental aspects of the genetics of adaptation in changing environments: the establishment of new beneficial mutations. We use the framework of time-dependent branching processes to derive simple approximations for the establishment probability of new mutations assuming that temporal changes in the offspring distribution are small. This approach allows us to generalize Haldane's classic result for the fixation probability in a constant environment to arbitrary patterns of temporal change in selection coefficients. Under weak selection, the only aspect of temporal variation that enters the probability of establishment is a weighted average of selection coefficients. These weights quantify how much earlier generations contribute to determining the establishment probability compared to later generations. We apply our results to several biologically interesting cases such as selection coefficients that change in consistent, periodic, and random ways and to changing population sizes. Comparison with exact results shows that the approximation is very accurate. 相似文献
10.
Ostrowski EA Woods RJ Lenski RE 《Proceedings. Biological sciences / The Royal Society》2008,275(1632):277-284
Pleiotropy plays a central role in theories of adaptation, but little is known about the distribution of pleiotropic effects associated with different adaptive mutations. Previously, we described the phenotypic effects of a collection of independently arising beneficial mutations in Escherichia coli. We quantified their fitness effects in the glucose environment in which they evolved and their pleiotropic effects in five novel resource environments. Here we use a candidate gene approach to associate the phenotypic effects of the mutations with the underlying genetic changes. Among our collection of 27 adaptive mutants, we identified a total of 21 mutations (18 of which were unique) encompassing five different loci or gene regions. There was limited resolution to distinguish among loci based on their fitness effects in the glucose environment, demonstrating widespread parallelism in the direct response to selection. However, substantial heterogeneity in mutant effects was revealed when we examined their pleiotropic effects on fitness in the five novel environments. Substitutions in the same locus clustered together phenotypically, indicating concordance between molecular and phenotypic measures of divergence. 相似文献
11.
RNA viruses are the main source of emerging infectious diseases because of the evolutionary potential bestowed by their fast replication, large population sizes and high mutation and recombination rates. However, an equally important property, which is usually neglected, is the topography of the fitness landscape. How many fitness maxima exist and how well they are connected is especially interesting, as this determines the number of accessible evolutionary pathways. To address this question, we have reconstructed a region of the fitness landscape of tobacco etch potyvirus constituted by mutations observed during the experimental adaptation of the virus to the novel host Arabidopsis thaliana. Fitness was measured for many genotypes and showed the existence of multiple peaks and holes in the landscape. We found prevailing epistatic effects between mutations, with cases of reciprocal sign epistasis being common among pairs of mutations. We also found that high‐order epistasis was as important as pairwise epistasis in their contribution to fitness. Therefore, results suggest that the landscape was rugged due to the existence of holes caused by lethal genotypes, that a very limited number of potential neutral paths exist and that it contained a single adaptive peak. 相似文献
12.
Peter C. Zee Helena Mendes‐Soares Yuen‐Tsu N. Yu Susanne A. Kraemer Heike Keller Stephan Ossowski Korbinian Schneeberger Gregory J. Velicer 《Evolution; international journal of organic evolution》2014,68(9):2701-2708
Although the importance of epistasis in evolution has long been recognized, remarkably little is known about the processes by which epistatic interactions evolve in real time in specific biological systems. Here, we have characterized how the epistatic fitness relationship between a social gene and an adapting genome changes radically over a short evolutionary time frame in the social bacterium Myxococcus xanthus. We show that a highly beneficial effect of this social gene in the ancestral genome is gradually reduced—and ultimately reversed into a deleterious effect—over the course of an experimental adaptive trajectory in which a primitive form of novel cooperation evolved. This reduction and reversal of a positive social allelic effect is driven solely by changes in the genetic context in which the gene is expressed as new mutations are sequentially fixed during adaptive evolution, and explicitly demonstrates a significant evolutionary change in the genetic architecture of an ecologically important social trait. 相似文献
13.
When a beneficial mutation is fixed in a population that lacks recombination, the genetic background linked to that mutation is fixed. As a result, beneficial mutations on different backgrounds experience competition, or "clonal interference," that can cause asexual populations to evolve more slowly than their sexual counterparts. Factors such as a large population size (N) and high mutation rates (mu) increase the number of competing beneficial mutations, and hence are expected to increase the intensity of clonal interference. However, recent theory suggests that, with very large values of Nmu, the severity of clonal interference may instead decline. The reason is that, with large Nmu, genomes including both beneficial mutations are rapidly created by recurrent mutation, obviating the need for recombination. Here, we analyze data from experimentally evolved asexual populations of a bacteriophage and find that, in these nonrecombining populations with very large Nmu, recurrent mutation does appear to ameliorate this cost of asexuality. 相似文献
14.
Why sexual reproduction has evolved to be such a widespread mode of reproduction remains a major question in evolutionary biology. Although previous studies have shown that increased sex and recombination can evolve in the presence of host-parasite interactions (the 'Red Queen hypothesis' for sex), many of these studies have assumed that multiple loci mediate infection vs. resistance. Data suggest, however, that a major locus is typically involved in antigen presentation and recognition. Here, we explore a model where only one locus mediates host-parasite interactions, but a second locus is subject to directional selection. Even though the effects of these genes on fitness are independent, we show that increased rates of sex and recombination are favoured at a modifier gene that alters the rate of genetic mixing. This result occurs because of selective interference in finite populations (the 'Hill-Robertson effect'), which also favours sex. These results suggest that the Red Queen hypothesis may help to explain the evolution of sex by contributing a form of persistent selection, which interferes with directional selection at other loci and thereby favours sex and recombination. 相似文献
15.
Ostrowski EA Rozen DE Lenski RE 《Evolution; international journal of organic evolution》2005,59(11):2343-2352
Micromutational models of adaptation have placed considerable weight on antagonistic pleiotropy as a mechanism that prevents mutations of large effect from achieving fixation. However, there are few empirical studies of the distribution of pleiotropic effects, and no studies that have examined this distribution for a large number of adaptive mutations. Here we examine the form and extent of pleiotropy associated with beneficial mutations in Escherichia coli. To do so, we used a collection of independently evolved genotypes, each of which contains a beneficial mutation that confers increased fitness in a glucose-limited environment. To determine the pleiotropic effects of these mutations, we examined the fitnesses of the mutants in five novel resource environments. Our results show that the majority of mutations had significant fitness effects in alternative resources, such that pleiotropy was common. The predominant form of this pleiotropy was positive--that is, most mutations that conferred increased fitness in glucose also conferred increased fitness in novel resources. We did detect some deleterious pleiotropic effects, but they were primarily limited to one of the five resources, and within this resource, to only a subset of mutants. Although pleiotropic effects were generally positive, fitness levels were lower and more variable on resources that differed most in their mechanisms of uptake and catabolism from that of glucose. Positive pleiotropic effects were strongly correlated in magnitude with their direct effects, but no such correlation was found among mutants with deleterious pleiotropic effects. Whereas previous studies of populations evolved on glucose for longer periods of time showed consistent declines on some of the resources used here, our results suggest that deleterious pleiotropic effects were limited to only a subset of the beneficial mutations available. 相似文献
16.
Lauren M. F. Merlo Kathleen Sprouffske Taylor C. Howard Kristin L. Gardiner Aleah F. Caulin Steven M. Blum Perry Evans Antonio Bedalov Paul D. Sniegowski Carlo C. Maley 《Evolutionary Applications》2020,13(7):1615-1625
Beneficial mutations that arise in an evolving asexual population may compete or interact in ways that alter the overall rate of adaptation through mechanisms such as clonal or functional interference. The application of multiple selective pressures simultaneously may allow for a greater number of adaptive mutations, increasing the opportunities for competition between selectively advantageous alterations, and thereby reducing the rate of adaptation. We evolved a strain of Saccharomyces cerevisiae that could not produce its own histidine or uracil for ~500 generations under one or three selective pressures: limitation of the concentration of glucose, histidine, and/or uracil in the media. The rate of adaptation was obtained by measuring evolved relative fitness using competition assays. Populations evolved under a single selective pressure showed a statistically significant increase in fitness on those pressures relative to the ancestral strain, but the populations evolved on all three pressures did not show a statistically significant increase in fitness over the ancestral strain on any single pressure. Simultaneously limiting three essential nutrients for a population of S. cerevisiae effectively slows the rate of evolution on any one of the three selective pressures applied, relative to the single selective pressure cases. We identify possible mechanisms for fitness changes seen between populations evolved on one or three limiting nutrient pressures by high‐throughput sequencing. Adding multiple selective pressures to evolving disease like cancer and infectious diseases could reduce the rate of adaptation and thereby may slow disease progression, prolong drug efficacy and prevent deaths. 相似文献
17.
We study the process of adaptation in a spatially structured asexual haploid population. The model assumes a local competition
for replication, where each organism interacts only with its nearest neighbors. We observe that the substitution rate of beneficial
mutations is smaller for a spatially structured population than that seen for populations without structure. The difference
between structured and unstructured populations increases as the adaptive mutation rate increases. Furthermore, the substitution
rate decreases as the number of neighbors for local competition is reduced. We have also studied the impact of structure on
the distribution of adaptive mutations that fix during adaptation. 相似文献
18.
Orr HA 《Evolution; international journal of organic evolution》2005,59(1):216-220
Abstract How often will natural selection drive parallel evolution at the DNA sequence level? More precisely, what is the probability that selection will cause two populations that live in identical environments to substitute the same beneficial mutation? Here I show that, under fairly general conditions, the answer is simple: if a wild‐type sequence can mutate to n different beneficial mutations, replicate populations will on average fix the same mutation with probability P= 2/(n + 1). This probability, which is derived using extreme value theory, is independent of most biological details, including the length of the gene in question and the precise distribution of fitness effects among alleles. I conclude that the probability of parallel evolution under natural selection is nearly twice as large as that under neutrality. 相似文献
19.
In the absence of sexual recombination somatic mutations represent the only source of genetic variation in clonally propagating plants. We analyse the probability of such somatic mutations in the shoot apical meristem being fixed in descendant generations of meristems. A model of meristem cell dynamics is presented for the unstratified shoot apical meristem. The fate of one mutant initial is studied for a two- and three-celled shoot apical meristem. The main parameters of the model are the number of apical initials, the time between selection cycles, number of selection cycles and cell viability of the mutant genotype. As the number of mitotic divisions per selection cycle and number of selection cycles increases the chimeric state dissipates and the probability of mutation fixation approaches an asymptote. The value of this fixation asymptote depends primarily on cell viability, while the time to reach it is mainly influenced by the total number of mitotic divisions as well as the number of initials. In contrast to the presumed operation of Muller’s Ratchet in plants the chimeric state may represent an opportunity for deleterious mutations to be eliminated through intraorganismal selection or random drift. We conclude that intraorganismal selection not only can be a substantial force for the elimination of deleterious mutations, but also can have the potential to confer an evolutionary change through a meristematic cell lineage alone. 相似文献
20.
Arne Traulsen Jorge M. Pacheco Lucio Luzzatto David Dingli 《BioEssays : news and reviews in molecular, cellular and developmental biology》2010,32(11):1003-1008
Clonal disease is often regarded as almost synonymous with cancer. However, it is becoming increasingly clear that our bodies harbor numerous mutant clones that are not tumors, and mostly give rise to no disease at all. Here we discuss three somatic mutations arising within the hematopoietic system: BCR‐ABL, characteristic of chronic myeloid leukemia; mutations of the PIG‐A gene, characteristic of paroxysmal nocturnal hemoglobinuria; the V617F mutation in the JAK2 gene, characteristic of myeloproliferative diseases. The population frequencies of these three blood disorders fit well with a hierarchical model of hematopoiesis. The fate of any mutant clone will depend on the target cell and on the fitness advantage, if any, that the mutation confers on the cell. In general, we can expect that only a mutation in a hematopoietic stem cell will give long‐term disease; the same mutation taking place in a cell located more downstream may produce just a ripple in the hematopoietic ocean. 相似文献