首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jiang X  Xu Z  Li J  Shi Y  Wu W  Tao S 《PloS one》2011,6(11):e27757
We study the dynamics of adaptation in asexual populations that undergo both beneficial and deleterious mutations. In particular, how the deleterious mutations affect the fixation of beneficial mutations was investigated. Using extensive Monte Carlo simulations, we find that in the "strong-selection weak mutation (SSWM)" regime or in the "clonal interference (CI)" regime, deleterious mutations rarely influence the distribution of "selection coefficients of the fixed mutations (SCFM)"; while in the "multiple mutations" regime, the accumulation of deleterious mutations would lead to a decrease in fitness significantly. We conclude that the effects of deleterious mutations on adaptation depend largely on the supply of beneficial mutations. And interestingly, the lowest adaptation rate occurs for a moderate value of selection coefficient of deleterious mutations.  相似文献   

2.
We study the population genetics of adaptation in nonequilibrium haploid asexual populations. We find that the accumulation of deleterious mutations, due to the operation of Muller's ratchet, can considerably reduce the rate of fixation of advantageous alleles. Such reduction can be approximated reasonably well by a reduction in the effective population size. In the absence of Muller's ratchet, a beneficial mutation can only become fixed if it creates the best possible genotype; if Muller's ratchet operates, however, mutations initially arising in a nonoptimal genotype can also become fixed in the population, since the loss of the least-loaded class implies that an initially nonoptimal background can become optimal. We show that, while the rate at which adaptive mutations become fixed is reduced, the rate of fixation of deleterious mutations due to the ratchet is not changed by the presence of beneficial mutations as long as the rate of their occurrence is low and the deleterious effects of mutations (s(d)) are higher than the beneficial effects (s(a)). When s(a) > s(d), the advantage of a beneficial mutation can outweigh the deleterious effects of associated mutations. Under these conditions, a beneficial allele can drag to fixation deleterious mutations initially associated with it at a higher rate than in the absence of advantageous alleles. We propose analytical approximations for the rates of accumulation of deleterious and beneficial mutations. Furthermore, when allowing for the possible occurrence of interference between beneficial alleles, we find that the presence of deleterious mutations of either very weak or very strong effect can marginally increase the rate of accumulation of beneficial mutations over that observed in the absence of such deleterious mutations.  相似文献   

3.
Deleterious mutations are considered a major impediment to adaptation, and there are straightforward expectations for the rate at which they accumulate as a function of population size and mutation rate. In a simulation model of an evolving population of asexually replicating RNA molecules, initially deleterious mutations accumulated at rates nearly equal to that of initially beneficial mutations, without impeding evolutionary progress. As the mutation rate was increased within a moderate range, deleterious mutation accumulation and mean fitness improvement both increased. The fixation rates were higher than predicted by many population-genetic models. This seemingly paradoxical result was resolved in part by the observation that, during the time to fixation, the selection coefficient (s) of initially deleterious mutations reversed to confer a selective advantage. Significantly, more than half of the fixations of initially deleterious mutations involved fitness reversals. These fitness reversals had a substantial effect on the total fitness of the genome and thus contributed to its success in the population. Despite the relative importance of fitness reversals, however, the probabilities of fixation for both initially beneficial and initially deleterious mutations were exceedingly small (on the order of 10−5 of all mutations).  相似文献   

4.
The Probability of Fixation in Populations of Changing Size   总被引:16,自引:5,他引:11  
S. P. Otto  M. C. Whitlock 《Genetics》1997,146(2):723-733
The rate of adaptive evolution of a population ultimately depends on the rate of incorporation of beneficial mutations. Even beneficial mutations may, however, be lost from a population since mutant individuals may, by chance, fail to reproduce. In this paper, we calculate the probability of fixation of beneficial mutations that occur in populations of changing size. We examine a number of demographic models, including a population whose size changes once, a population experiencing exponential growth or decline, one that is experiencing logistic growth or decline, and a population that fluctuates in size. The results are based on a branching process model but are shown to be approximate solutions to the diffusion equation describing changes in the probability of fixation over time. Using the diffusion equation, the probability of fixation of deleterious alleles can also be determined for populations that are changing in size. The results developed in this paper can be used to estimate the fixation flux, defined as the rate at which beneficial alleles fix within a population. The fixation flux measures the rate of adaptive evolution of a population and, as we shall see, depends strongly on changes that occur in population size.  相似文献   

5.
In nonrecombining genomes, genetic linkage can be an important evolutionary force. Linkage generates interference interactions, by which simultaneously occurring mutations affect each other's chance of fixation. Here, we develop a comprehensive model of adaptive evolution in linked genomes, which integrates interference interactions between multiple beneficial and deleterious mutations into a unified framework. By an approximate analytical solution, we predict the fixation rates of these mutations, as well as the probabilities of beneficial and deleterious alleles at fixed genomic sites. We find that interference interactions generate a regime of emergent neutrality: all genomic sites with selection coefficients smaller in magnitude than a characteristic threshold have nearly random fixed alleles, and both beneficial and deleterious mutations at these sites have nearly neutral fixation rates. We show that this dynamic limits not only the speed of adaptation, but also a population's degree of adaptation in its current environment. We apply the model to different scenarios: stationary adaptation in a time-dependent environment and approach to equilibrium in a fixed environment. In both cases, the analytical predictions are in good agreement with numerical simulations. Our results suggest that interference can severely compromise biological functions in an adapting population, which sets viability limits on adaptive evolution under linkage.  相似文献   

6.
With a small effective population size, random genetic drift is more important than selection in determining the fate of new alleles. Small populations therefore accumulate deleterious mutations. Left unchecked, the effect of these fixed alleles is to reduce the reproductive capacity of a species, eventually to the point of extinction. New beneficial mutations, if fixed by selection, can restore some of this lost fitness. This paper derives the overall change in fitness due to fixation of new deleterious and beneficial alleles, as a function of the distribution of effects of new mutations and the effective population size. There is a critical effective size below which a population will on average decline in fitness, but above which beneficial mutations allow the population to persist. With reasonable estimates of the relevant parameters, this critical effective size is likely to be a few hundred. Furthermore, sexual selection can act to reduce the fixation probability of deleterious new mutations and increase the probability of fixing new beneficial mutations. Sexual selection can therefore reduce the risk of extinction of small populations.  相似文献   

7.
Fitness interactions between loci in the genome, or epistasis, can result in mutations that are individually deleterious but jointly beneficial. Such epistasis gives rise to multiple peaks on the genotypic fitness landscape. The problem of evolutionary escape from such local peaks has been a central problem of evolutionary genetics for at least 75 years. Much attention has focused on models of small populations, in which the sequential fixation of valley genotypes carrying individually deleterious mutations operates most quickly owing to genetic drift. However, valley genotypes can also be subject to mutation while transiently segregating, giving rise to copies of the high fitness escape genotype carrying the jointly beneficial mutations. In the absence of genetic recombination, these mutations may then fix simultaneously. The time for this process declines sharply with increasing population size, and it eventually comes to dominate evolutionary behavior. Here we develop an analytic expression for N(crit), the critical population size that defines the boundary between these regimes, which shows that both are likely to operate in nature. Frequent recombination may disrupt high-fitness escape genotypes produced in populations larger than N(crit) before they reach fixation, defining a third regime whose rate again slows with increasing population size. We develop a novel expression for this critical recombination rate, which shows that in large populations the simultaneous fixation of mutations that are beneficial only jointly is unlikely to be disrupted by genetic recombination if their map distance is on the order of the size of single genes. Thus, counterintuitively, mass selection alone offers a biologically realistic resolution to the problem of evolutionary escape from local fitness peaks in natural populations.  相似文献   

8.
The effect of deleterious alleles on adaptation in asexual populations   总被引:4,自引:0,他引:4  
Johnson T  Barton NH 《Genetics》2002,162(1):395-411
We calculate the fixation probability of a beneficial allele that arises as the result of a unique mutation in an asexual population that is subject to recurrent deleterious mutation at rate U. Our analysis is an extension of previous works, which make a biologically restrictive assumption that selection against deleterious alleles is stronger than that on the beneficial allele of interest. We show that when selection against deleterious alleles is weak, beneficial alleles that confer a selective advantage that is small relative to U have greatly reduced probabilities of fixation. We discuss the consequences of this effect for the distribution of effects of alleles fixed during adaptation. We show that a selective sweep will increase the fixation probabilities of other beneficial mutations arising during some short interval afterward. We use the calculated fixation probabilities to estimate the expected rate of fitness improvement in an asexual population when beneficial alleles arise continually at some low rate proportional to U. We estimate the rate of mutation that is optimal in the sense that it maximizes this rate of fitness improvement. Again, this analysis relaxes the assumption made previously that selection against deleterious alleles is stronger than on beneficial alleles.  相似文献   

9.
Recent theoretical studies have illustrated the potential role of spontaneous deleterious mutation as a cause of extinction in small populations. However, these studies have not addressed several genetic issues, which can in principle have a substantial influence on the risk of extinction. These include the presence of synergistic epistasis, which can reduce the rate of mutation accumulation by progressively magnifying the selective effects of mutations, and the occurrence of beneficial mutations, which can offset the effects of previous deleterious mutations. In stochastic simulations of small populations (effective sizes on the order of 100 or less), we show that both synergistic epistasis and the rate of beneficial mutation must be unrealistically high to substantially reduce the risk of extinction due to random fixation of deleterious mutations. However, in analytical calculations based on diffusion theory, we show that in large, outcrossing populations (effective sizes greater than a few hundred), very low levels of beneficial mutation are sufficient to prevent mutational decay. Further simulation results indicate that in populations small enough to be highly vulnerable to mutational decay, variance in deleterious mutational effects reduces the risk of extinction, assuming that the mean deleterious mutational effect is on the order of a few percent or less. We also examine the magnitude of outcrossing that is necessary to liberate a predominantly selfing population from the threat of long-term mutational deterioration. The critical amount of outcrossing appears to be greater than is common in near-obligately selfing plant species, supporting the contention that such species are generally doomed to extinction via random drift of new mutations. Our results support the hypothesis that a long-term effective population size in the neighborhood of a few hundred individuals defines an approximate threshold, below which outcrossing populations are vulnerable to extinction via fixation of deleterious mutations, and above which immunity is acquired.  相似文献   

10.
Several models have been suggested to explain the origin and maintenance of recombination. Here I present the results from computer simulations of multilocus haploid and diploid genotypes in small populations. Each chromosome consisted of 1001 loci where deleterious mutations occurred. At "equilibrium" for mutation-selection-genetic drift balance a single recombination variant was introduced to the population in the middle of a chromosome. On average 75,000 replicates for each combination of parameters were followed to fixation or loss of the modifier allele. The results show that, in a small population, increased recombination can be selected, even in the absence of epistasis or beneficial mutations. The effect of the mutation rate for deleterious mutations depends on the ploidy level and the recessiveness of deleterious mutations. A higher deleterious mutation rate is required for an increase in recombination rate to be favored in haploid populations. Increased recombination could not evolve in the case of strong associative overdominance.  相似文献   

11.
It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites—both in the presence and absence of interference amongst deleterious mutations—and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.  相似文献   

12.
In finite populations, an allele disappears or reaches fixation due to two main forces, selection and drift. Selection is generally thought to accelerate the process: a selected mutation will reach fixation faster than a neutral one, and a disadvantageous one will quickly disappear from the population. We show that even in simple diploid populations, this is often not true. Dominance and recessivity unexpectedly slow down the evolutionary process for weakly selected alleles. In particular, slightly advantageous dominant and mildly deleterious recessive mutations reach fixation slightly more slowly than neutral ones (at most 5%). This phenomenon determines genetic signatures opposite to those expected under strong selection, such as increased instead of decreased genetic diversity around the selected site. Furthermore, we characterize a new phenomenon: mildly deleterious recessive alleles, thought to represent a wide fraction of newly arising mutations, on average survive in a population slightly longer than neutral ones, before getting lost. Consequently, these mutations are on average slightly older than neutral ones, in contrast with previous expectations. Furthermore, they slightly increase the amount of weakly deleterious polymorphisms, as a consequence of the longer unconditional sojourn times compared to neutral mutations.  相似文献   

13.
Desai MM  Fisher DS 《Genetics》2011,188(4):997-1014
Mutator alleles, which elevate an individual's mutation rate from 10 to 10,000-fold, have been found at high frequencies in many natural and experimental populations. Mutators are continually produced from nonmutators, often due to mutations in mismatch-repair genes. These mutators gradually accumulate deleterious mutations, limiting their spread. However, they can occasionally hitchhike to high frequencies with beneficial mutations. We study the interplay between these effects. We first analyze the dynamics of the balance between the production of mutator alleles and their elimination due to deleterious mutations. We find that when deleterious mutation rates are high in mutators, there will often be many "young," recently produced mutators in the population, and the fact that deleterious mutations only gradually eliminate individuals from a population is important. We then consider how this mutator-nonmutator balance can be disrupted by beneficial mutations and analyze the circumstances in which fixation of mutator alleles is likely. We find that dynamics is crucial: even in situations where selection on average acts against mutators, so they cannot stably invade, the mutators can still occasionally generate beneficial mutations and hence be important to the evolution of the population.  相似文献   

14.
Johnson T 《Genetics》1999,151(4):1621-1631
Natural selection acts in three ways on heritable variation for mutation rates. A modifier allele that increases the mutation rate is (i) disfavored due to association with deleterious mutations, but is also favored due to (ii) association with beneficial mutations and (iii) the reduced costs of lower fidelity replication. When a unique beneficial mutation arises and sweeps to fixation, genetic hitchhiking may cause a substantial change in the frequency of a modifier of mutation rate. In previous studies of the evolution of mutation rates in sexual populations, this effect has been underestimated. This article models the long-term effect of a series of such hitchhiking events and determines the resulting strength of indirect selection on the modifier. This is compared to the indirect selection due to deleterious mutations, when both types of mutations are randomly scattered over a given genetic map. Relative to an asexual population, increased levels of recombination reduce the effects of beneficial mutations more rapidly than those of deleterious mutations. However, the role of beneficial mutations in determining the evolutionarily stable mutation rate may still be significant if the function describing the cost of high-fidelity replication has a shallow gradient.  相似文献   

15.
This work extends the work of Whitlock in examining the critical effective population sizes from the fixation of both deleterious and beneficial mutations under drift and selection to prevent mutation breakdown of the population. The validity of approximations for the probability of fixation depends on the nature of the assumed distribution for the fitness effect of both types of mutations. Using no approximation for the probability of fixation and assuming a heavy tailed fitness effect distribution, the current model indicates that the coefficients of variation for the fitness effect distributions of both types of mutations and the fitness effect distribution mean for the beneficial mutations are important predictors of the critical effective population size. The current model further predicts that very small populations can be sustained if the fitness effect variances for both types of mutations and the mean for beneficial mutations are large.  相似文献   

16.
The appearance of new mutations within a population provides the raw material for evolution. The consistent decline in fitness observed in classical mutation accumulation studies has provided support for the long-held view that deleterious mutations are more common than beneficial mutations. Here we present results of a study using a mutation accumulation design with the bacterium Streptococcus pneumoniae in which the fitness of the derived populations increased. This rise in fitness was associated specifically with adaptation to survival during brief stationary phase periods between single-colony population bottlenecks. To understand better the population dynamics behind this unanticipated adaptation, we developed a maximum likelihood model describing the processes of mutation and stationary-phase selection in the context of frequent population bottlenecks. Using this model, we estimate that the rate of beneficial mutations may be as high as 4.8×10(-4) events per genome for each time interval corresponding to the pneumococcal generation time. This rate is several orders of magnitude higher than earlier estimates of beneficial mutation rates in bacteria but supports recent results obtained through the propagation of small populations of Escherichia coli. Our findings indicate that beneficial mutations may be relatively frequent in bacteria and suggest that in S. pneumoniae, which develops natural competence for transformation, a steady supply of such mutations may be available for sampling by recombination.  相似文献   

17.
Protein evolution has occurred by successive fixation of individual mutations. The probability of fixation depends on the fitness of the mutation, and the arising variant can be deleterious, neutral, or beneficial. Despite its relevance, only few studies have estimated the distribution of fitness effects caused by random single mutations on protein function. The human immunodeficiency virus type 1 (HIV-1) protease was chosen as a model protein to quantify protein's tolerability to random single mutations. After determining the enzymatic activity of 107 single random mutants, we found that 86% of single mutations were deleterious for the enzyme catalytic efficiency and 54% lethal. Only 2% of the mutations significantly increased the catalytic efficiency of the enzyme. These data demonstrate the vulnerability of HIV-1 protease to single random mutations. When a second random mutagenesis library was constructed from an HIV-1 protease carrying a highly deleterious single mutation (D30N), a higher proportion of mutations with neutral or beneficial effect were found, 26% and 9%, respectively. Importantly, antagonist epistasis was observed between deleterious mutations. In particular, the mutation N88D, lethal for the wild-type protease, restored the wild-type catalytic efficiency when combined with the highly deleterious mutation D30N. The low tolerability to single random substitutions shown here for the wild-type HIV-1 protease contrasts with its in vivo ability to generate an adaptive variation. Thus, the antagonist epistasis between deleterious or lethal mutations may be responsible for increasing the protein mutational robustness and evolvability.  相似文献   

18.
Whitlock MC 《Genetics》2003,164(2):767-779
New alleles arising in a population by mutation ultimately are either fixed or lost. Either is possible, for both beneficial and deleterious alleles, because of stochastic changes in allele frequency due to genetic drift. Spatially structured populations differ from unstructured populations in the probability of fixation and the time that this fixation takes. Previous results have generally made many assumptions: that all demes contribute to the next generation in exact proportion to their current sizes, that new mutations are beneficial, and that new alleles have additive effects. In this article these assumptions are relaxed, allowing for an arbitrary distribution among demes of reproductive success, both beneficial and deleterious effects, and arbitrary dominance. The effects of population structure can be expressed with two summary statistics: the effective population size and a variant of Wright's F(ST). In general, the probability of fixation is strongly affected by population structure, as is the expected time to fixation or loss. Population structure changes the effective size of the species, often strongly downward; smaller effective size increases the probability of fixing deleterious alleles and decreases the probability of fixing beneficial alleles. On the other hand, population structure causes an increase in the homozygosity of alleles, which increases the probability of fixing beneficial alleles but somewhat decreases the probability of fixing deleterious alleles. The probability of fixing new beneficial alleles can be simply described by 2hs(1 - F(ST))N(e)/N(tot), where hs is the change in fitness of heterozygotes relative to the ancestral homozygote, F(ST) is a weighted version of Wright's measure of population subdivision, and N(e) and N(tot) are the effective and census sizes, respectively. These results are verified by simulation for a broad range of population structures, including the island model, the stepping-stone model, and a model with extinction and recolonization.  相似文献   

19.
Although mutations drive the evolutionary process, the rates at which the mutations occur are themselves subject to evolutionary forces. Our purpose here is to understand the role of selection and random genetic drift in the evolution of mutation rates, and we address this question in asexual populations at mutation‐selection equilibrium neglecting selective sweeps. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large asexual population of mutators and find that a nonmutator is more likely to fix when the deleterious mutation rate of the mutator population is high. Compensatory mutations in the mutator population are found to decrease the fixation probability of a nonmutator when the selection coefficient is large. But, surprisingly, the fixation probability changes nonmonotonically with increasing compensatory mutation rate when the selection is mild. Using these results for the fixation probability and a drift‐barrier argument, we find a novel relationship between the mutation rates and the population size. We also discuss the time to fix the nonmutator in an adapted population of asexual mutators, and compare our results with experiments.  相似文献   

20.
Most new mutations are deleterious and are eventually eliminated by natural selection. But in an adapting population, the rapid amplification of beneficial mutations can hinder the removal of deleterious variants in nearby regions of the genome, altering the patterns of sequence evolution. Here, we analyze the interactions between beneficial “driver” mutations and linked deleterious “passengers” during the course of adaptation. We derive analytical expressions for the substitution rate of a deleterious mutation as a function of its fitness cost, as well as the reduction in the beneficial substitution rate due to the genetic load of the passengers. We find that the fate of each deleterious mutation varies dramatically with the rate and spectrum of beneficial mutations and the deleterious substitution rate depends nonmonotonically on the population size and the rate of adaptation. By quantifying this dependence, our results allow us to estimate which deleterious mutations will be likely to fix and how many of these mutations must arise before the progress of adaptation is significantly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号