首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以射干苷元为先导化合物合成了5个衍生物,并以射干苷元为对照,考察化合物体外抗肿瘤的活性,为研发新抗肿瘤药物提供依据。化学试验分别通过磺化反应、甲基化、乙基化反应合成化合物1~5,并根据红外、紫外、质谱、核磁等数据确定各化合物的结构,分别是射干苷元-5'-磺酸钠(1)、4',7-二甲基射干苷元(2)、4',7-二甲基射干苷元-5'-磺酸钠(3)、4',7-二乙基射干苷元(4)、4',7-二乙基射干苷元-5'-磺酸钠(5),其中化合物5为新化合物;活性研究表明各化合物组对HCT116、A549、HepG2细胞体外增值均有不同程度的抑制作用,效果明显强于同等剂量的射干苷元组,特别是化合物3对A549的IC50为33. 67μM,化合物5对HCT116和HepG2的IC50分别为24. 71和32. 42μM,抗肿瘤活性明显,具有很好的开发利用价值。  相似文献   

2.
为寻找对血管平滑肌细胞异常增殖有较强抑制作用的化合物,用MMT法考察新型大豆苷元磺酸酯体外抑制血管平滑肌细胞增殖活性.结果表明:该大豆苷元磺酸酯对血管平滑肌细胞增殖在10-6 mol/L时有抑制作用(P<0.05),该浓度下的抑制率为64.62%,与先导化合物大豆苷元相比活性提高约100倍.构效关系研究表明,大豆苷元经...  相似文献   

3.
新型大豆异黄酮磺酸酯抑制血管平滑肌细胞增殖活性研究   总被引:1,自引:0,他引:1  
为了寻找对血管平滑肌细胞异常增殖有较强抑制作用的化合物,本文用MMT法考察新型大豆苷元磺酸酯体外抑制血管平滑肌细胞增殖活性.结果表明:该大豆苷元磺酸酯对血管平滑肌细胞增殖在10-7 mol/L时有抑制作用(P<0.05),该浓度下的抑制率为56.06%,与先导化合物大豆苷元相比活性提高约1000倍.构效关系研究表明,大豆苷元经苯磺酸酯修饰,改变分子的空间结构、分子的可极化率从26.51增加到54.12,改变了药物的电荷分布,更有利于药物通过细胞膜到达靶标和与靶标更精确作用而导致药物药理作用大大增强.药理实验与构效关系研究初步表明,该大豆苷元磺酸酯有进一步研究价值.  相似文献   

4.
雌马酚(Equol)是肠道中特定细菌转化大豆异黄酮的产物,与其前体大豆苷元(Daidzein)相比,雌马酚具有更强的生物学活性。【目的】研究口服雌马酚产生菌对大鼠转化大豆苷元能力的可能促进作用及内源雌激素对大鼠肠道菌群的可能影响。【方法】使用平均体重为211±9g的卵巢摘除和假手术雌性大鼠各30只,分别随机分为5组,并灌胃蒸馏水、雌二醇、大豆苷元、雌马酚和大豆苷元+雌马酚产生菌ZX7。【结果】从灌胃第2天开始,接受大豆苷元后大鼠粪样中始终具有较高水平的雌马酚,显著高于对照和雌二醇组(P<0.01);灌胃大豆苷元+雌马酚产生菌ZX7的大鼠和直接灌胃雌马酚的大鼠在粪样雌马酚含量上十分接近;DGGE图谱的PCA分析显示,卵巢摘除大鼠和假手术大鼠粪便菌群存在明显差异;大鼠粪便拟杆菌门细菌数量与粪样中雌马酚水平显著正相关。【结论】大鼠肠道固有菌群中可能存在能够将大豆苷元转化为雌马酚的细菌,利用外源菌株改变大鼠雌马酚产生能力具有一定的可行性,不同的内源雌激素水平可能影响大鼠肠道菌群结构,拟杆菌门细菌可能在大豆苷元的生物转化过程中起着十分重要的作用。  相似文献   

5.
改进以往反应条件,合成了黄芩苷镧(Ⅲ)、黄芩苷钇(Ⅲ)配合物,利用IR、UV、LC-MS和金属元素含量测定对配合物进行了表征。采用MTT法分别考察了两种新化合物的抑菌活性(金黄色葡萄球菌、大肠杆菌、枯草芽孢杆菌、沙门氏菌、白色念珠菌)和抗肿瘤活性(A549、HepG2),采用灌胃法考察化合物对小鼠的急性毒性。结果表明:黄芩苷在与金属配合后,结构表征发生了一定的变化,配合物无金属离子毒性反应,并且其抑菌、抗肿瘤作用均显示出黄芩苷镧>黄芩苷钇>黄芩苷。  相似文献   

6.
采用密度泛函理论B3LYP方法对灯盏花乙素及其苷元分子进行几何结构全优化,获得两个化合物的最低能量结构。从分子的几何结构、NBO电荷、酚羟基解离能BDE、绝热电离势IP和前线分子轨道等方面分析了两个化合物的结构与抗氧化活性之间的关系。计算结果表明,C6位的酚羟基为灯盏花乙素及其苷元的最大反应活性位点,灯盏花乙素的抗氧化活性弱于其苷元的抗氧化活性,计算结果与实验结果吻合。天然的糖苷类物质水解为苷元后,其抗氧化活性增强。此外,还考虑了溶剂效应,考察溶剂极性对抗氧化活性的影响。在所有环境中,抽氢反应机制是化合物自由基清除反应的最主要机制。  相似文献   

7.
黄酮类化合物抗肿瘤研究进展   总被引:6,自引:0,他引:6  
黄酮类化合物是广泛存在于自然界中的一类多酚化合物,有许多潜在的药用价值,抗肿瘤活性是其研究热点之一。其抗肿瘤作用主要表现在抑制细胞增殖、诱导细胞凋亡、干预信号转导、影响细胞周期、影响血管生成、克服肿瘤细胞多药耐药性等方面。文中就黄酮类化合物抗肿瘤作用的研究进展进行综述。  相似文献   

8.
中药天冬的化学成分研究   总被引:25,自引:2,他引:23  
从中药天冬氯仿提取物中分离得到8个化合物,通过化学和波谱方法将其结构鉴定为:β-谷甾醇(1),胡萝卜苷(2),正-三十二碳酸(3),棕榈酸(4),9-二十七碳烯(5),菝葜皂苷元(6),薯蓣皂苷元(7),菝葜皂苷元-3-O-[α-L-鼠李吡喃糖基(1-4)]-β-D-葡萄吡喃糖苷(8),除β-谷甾醇外均为首次从该植物中分得。体外活性实验表明化合物8具有抗真菌活性和抗肿瘤活性。  相似文献   

9.
采用超声法从野葛根中提取葛根异黄酮,再将提取物在盐酸水溶液中超声水解结合有机溶剂萃取法从野葛根中分离纯化葛根素和大豆苷元。葛根素收得率为1.2%,纯度为97.8%;大豆苷元收得率为0.5%,纯度为98.2%。超声法从野葛根中提取分离葛根异黄酮活性成分葛根素和大豆苷元具有省时、节能、提取率和产品纯度高的优点。  相似文献   

10.
多数抗肿瘤药物的水溶性差、系统毒性和多药耐药性已成为其临床应用所面临的主要问题,而利用聚乙二醇材料构建前药或合适的 递药系统来克服这些问题,备受广大药学研究者的关注。以具有良好抗肿瘤活性和分子荧光特性的阿霉素为例,综述聚乙二醇在化疗药物 前药和递药系统的构建及制备等成药性研究中的应用,为高效低毒抗肿瘤药品的进一步研究与开发提供参考。  相似文献   

11.
大豆黄酮抗氧化及抗癌作用   总被引:1,自引:0,他引:1  
大豆黄酮是异黄酮类化合物中最重要的生理活性物质。近年来发现它在促进生理机能、提高机体免疫力、抗氧化、抗癌方面的特殊功能使其成为研究热点。本文主要综述了大豆异黄酮的理化特性以及在抗氧化、抗癌等功能特性方面的最新研究进展,并根据当前研究现状对其应用前景和价值进行了展望。  相似文献   

12.
Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI50) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.  相似文献   

13.
This study was conducted to investigate the mechanism of action involved in the anti-cancer activity of daidzein and identification of cancer specific micro-environment as therapeutic target of this secondary metabolite derived from soy. Our data indicated that daidzein induces cellular DNA breakage, anti-proliferative effects and apoptosis in a concentration-dependent manner. We demonstrated that such a daidzein-induced anti-cancer action involves a copper-dependant pathway in which endogenous copper is mobilized by daidzein and redox-cycled to generate reactive oxygen species which act as an upstream signal leading to pro-oxidant cell death. Further in the context of hypoxia being a resistant factor against standard therapies and that an effect secondary to hypoxia is the intracellular acidification, we show that the anticancer activity of daidzein is modulated positively in acidic pH but copper-specific chelator is still able to inhibit daidzein activity. Moreover, an experimental setup of hypoxia mimic (cobalt chloride) revealed an enhanced sensitivity of cancer cells to the cytotoxic effects of daidzein which was neutralized in the presence of neocuproine. The findings support a paradigm shift from the conventional antioxidant property of dietary isoflavones to molecules capable of initiating a pro-oxidant signaling mediated by reactive oxygen species. Further, the clinical relevance of such an action mechanism in cancer chemoprevention is also proposed. This study identified endogenous copper as a molecular target and acidic pH as a modulating factor for the therapeutic activity of daidzein against cancer. The evidence presented highlights the potential of dietary agents as adjuvants to standard therapeutic regimens.  相似文献   

14.
Daidzein and genistein are isoflavones found in soybean. Genistein is known to exhibit anticarcinogenic activities and inhibit tyrosine kinase activity. However, the underlying molecular mechanisms of the chemopreventive activities of daidzein and its metabolite, equol, are not understood. Here we report that equol inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal cells by targeting the MEK/ERK/p90RSK/activator protein-1 signaling pathway. TPA-induced neoplastic cell transformation was inhibited by equol, but not daidzein, at noncytotoxic concentrations in a dose-dependent manner. Equol dose-dependently attenuated TPA-induced activation of activator protein-1 and c-fos, whereas daidzein did not exert any effect when tested at the same concentrations. The TPA-induced phosphorylation of ERK1/2, p90RSK, and Elk, but not MEK or c-Jun N-terminal kinase, was inhibited by equol but not by daidzein. In vitro kinase assays revealed that equol greatly inhibited MEK1, but not Raf1, kinase activity, and an ex vivo kinase assay also demonstrated that equol suppressed TPA-induced MEK1 kinase activity in JB6 P+ cell lysates. Equol dose-dependently inhibited neoplastic transformation of JB6 P+ cells induced by epidermal growth factor or H-Ras. Both in vitro and ex vivo pull-down assays revealed that equol directly bound with glutathione S-transferase-MEK1 to inhibit MEK1 activity without competing with ATP. These results suggested that the antitumor-promoting effect of equol is due to the inhibition of cell transformation mainly by targeting a MEK signaling pathway. These findings are the first to reveal a molecular basis for the anticancer action of equol and may partially account for the reported chemopreventive effects of soybean.  相似文献   

15.
16.
The extent of conversion of daidzein to its metabolite, equol, by intestinal microflora may be a critical step that determines if a diet rich in daidzein protects against the deterioration of bone after estrogen withdrawal. The objective was to determine the extent that daidzein is converted to equol. In addition, bone mineral content (BMC), bone mineral density (BMD) and strength of femurs and lumbar vertebrae (LV) in four mouse strains were measured. Mice were ovariectomized and fed control diet (AIN93G) with or without daidzein (200 mg daidzein/kg diet) for 3 weeks, after which serum, femurs and LV were collected. Serum daidzein and equol were elevated in all mice fed daidzein. Among mice fed daidzein, the CD-1 and Swiss–Webster (SW) mice had higher (P<.001) serum equol than C57BL/6 (C57) and C3H mice. Differences due to mouse strain were observed for all bone outcomes. C57 mice had lower femur BMC (P<.001), BMD (P<.001) and peak load at femur midpoint (P<.001) and neck (P<.001) than other mouse strains. C57 mice also had a lower femur midpoint yield load (P<.001) and resilience (P<.001) than C3H mice. C57 mice had a lower LV1–4 BMC (P<.001) and BMD (P<.001) compared with all mouse strains and peak load of LV3 was lower than CD-1 and SW mice. Differences in serum equol, BMD and bone strength properties should be considered when selecting a mouse strain for investigating whether dietary strategies that include isoflavones preserve bone tissue after ovariectomy.  相似文献   

17.
The effects of soy isoflavones, genistein and daidzein, which exhibit estrogenic, anti-estrogenic and/or tyrosine kinase inhibitory activity, on the dendritic morphology of B16 mouse melanoma cells were quantitatively evaluated and compared with those of 17 beta-estradiol (Est) and tyrphostin, a tyrosine kinase inhibitor. Dendricity was significantly stimulated in the order of Est > genistein > daidzein = tyrphostin, but not by glycosides of genistein and daidzein. In competition experiments, Est counteracted the stimulatory activity of genistein and daidzein, but enhanced the activity of tyrphostin additively, suggesting that genistein and daidzein agonized Est. In addition, when the concentration ratios of genistein/Est and daidzein/Est were higher than 5000 and 50,000, respectively, genistein and daidzein agonized Est. In contrast, when the ratio of daidzein/Est was lower than 500, daidzein antagonized Est. Furthermore, genistein and daidzein competed with each other in stimulatory activity. These observations suggest that: 1) dendricity is stimulated by agonists (genistein and daidzein) of Est and tyrosine kinase inhibitors (genistein and tyrphostin), 2) the concentration ratio of isoflavone aglycone/Est is very important as one regulatory factor for estrogenic and/or anti-estrogenic activity, and 3) daidzein antagonizes not only Est but also genistein. It is concluded that a quantitative and simple dendricity assay using B16 mouse melanoma cells is available to evaluate estrogenic and anti-estrogenic activity in vitro.  相似文献   

18.
The effects of soy isoflavones, genistein and daidzein, which exhibit estrogenic, anti‐estrogenic and/or tyrosine kinase inhibitory activity, on the dendritic morphology of B16 mouse melanoma cells were quantitatively evaluated and compared with those of 17β‐estradiol (Est) and tyrphostin, a tyrosine kinase inhibitor. Dendricity was significantly stimulated in the order of Est >> genistein > daidzein = tyrphostin, but not by glycosides of genistein and daidzein. In competition experiments, Est counteracted the stimulatory activity of genistein and daidzein, but enhanced the activity of tyrphostin additively, suggesting that genistein and daidzein agonized Est. In addition, when the concentration ratios of genistein/Est and daidzein/Est were higher than 5000 and 50 000, respectively, genistein and daidzein agonized Est. In contrast, when the ratio of daidzein/Est was lower than 500, daidzein antagonized Est. Furthermore, genistein and daidzein competed with each other in stimulatory activity. These observations suggest that: 1) dendricity is stimulated by agonists (genistein and daidzein) of Est and tyrosine kinase inhibitors (genistein and tyrphostin), 2) the concentration ratio of isoflavone aglycone/Est is very important as one regulatory factor for estrogenic and/or anti‐estrogenic activity, and 3) daidzein antagonizes not only Est but also genistein. It is concluded that a quantitative and simple dendricity assay using B16 mouse melanoma cells is available to evaluate estrogenic and anti‐estrogenic activity in vitro.  相似文献   

19.
大豆异黄酮对大鼠乳腺癌细胞内cAMP/PKA信号途径的影响   总被引:3,自引:0,他引:3  
Lin CZ  Ma HT  Zou SX  Wang GJ  Chen WH  Han ZK 《生理学报》2005,57(4):517-522
本实验研究了大豆异黄酮对SHZ-88大鼠乳腺癌细胞内cAMP/PKA信号途径的影响。实验设3组:空白对照组、50μg/ml大豆黄酮及15μg/ml染料木素组。采用放射免疫测定法(RIA)检测了胞内cAMP的浓度、腺苷酸环化酶(adenylate cyclase,AC)和磷酸二酯酶(phosphodiesterase,PDE)的活性,用(γ-^32P)ATP掺入法测定cAMP依赖性PKA的活性,半定量RT-PCR法分析cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)mRNA表达的变化。结果表明:在处理后5min,大豆黄酮组和染料木素组细胞的cAMP浓度分别比对照组升高了9.5%和11.0%(P〈0.05):10min时,分别比对照组升高31.0%和40.3%(P〈0.01)。3组细胞的AC活性在处理时间内没有明显变化。但在处理后5min,大豆黄酮组和染料木素组细胞的PDE活性分别降至对照组的71.8%和71.6%(P〈0.05)。处理后20min,大豆黄酮组和染料木素组细胞PKA活性分别上升到对照组的125.8%和122.3%(P〈0.05);到40min时仍维持在高水平。大豆黄酮组和染料木素组细胞CREB mRNA的表达量在处理后3h分别比对照组增加31.6%和51.1%(P〈0.05);6h后开始下降。这些结果提示,大豆异黄酮能够激活大鼠乳腺癌细胞内cAMP/PKA信号途径;而且是通过抑制磷酸二酯酶的活性,导致胞内cAMP浓度升高而实现的。  相似文献   

20.
Daidzein belongs to the group of isoflavones, found in a wide variety of plant-derived foods, especially in soybeans and soy-based foods. In this study, the effect of daidzein on human gastric carcinoma cells (BGC-823) and its mechanism were investigated. MTT assay was applied in the detection of the inhibitory effects of daidzein on cell proliferation. Hoechst–propidium iodide staining and flow cytometry were used to examine the apoptosis as well as the mitochondrial transmembrane potential. Western blotting was performed to detect the expression of apoptosis-associated proteins: cleaved PARP, cleaved caspase-9, cleaved caspase-3, Bcl-2, and Bax. Daidzein significantly inhibited the growth and proliferation of human gastric carcinoma cells (BGC-823) in a concentration- and time-dependent manner. Furthermore, it was found that an insult of daidzein to BGC-823 cells caused them to die by disruption of mitochondrial transmembrane potential, demonstrated not only by staining dead cells for phosphatidylserine but also by the up-regulation (cleaved PARP, cleaved caspase-9, cleaved caspase-3, Bax) and down-regulation (Bcl-2) of proteins associated with apoptosis and survival; whereas, the pan-caspase inhibitor z-VAD-fmk could partially rescue cells against damage of daidzein. Taken together, the results of this study demonstrate that daidzein significantly induces apoptosis via a mitochondrial pathway. Specifically, daidzein induced a change in the Bax/Bcl-2 ratios and activation of caspases-3 and -9 and the cleavage of PARP. Therefore, daidzein has the potential for use as a therapeutic agent for the treatment of gastric carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号