首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
昆虫卓越的爬行和附着能力来源于其精细的功能性黏附系统。根据形态结构的不同,昆虫的黏附系统可分为光滑型黏附垫和刚毛型黏附垫两种类型,二者在分泌液的支持下均能附着于几乎所有的光滑或粗糙的物体表面,而且这两种类型的黏附垫与界面的附着的形成均主要依赖于范德华力。本文综述了昆虫足的附着机制,包括光滑型和刚毛型两种黏附垫的结构和其形成附着的机理,以及黏附垫分泌液的功能、组成成分和释放机制,阐明了昆虫如何巧妙地解决稳定附着和快速脱附这一矛盾的问题,讨论了诸如界面的理化性质和环境湿度等环境因素对昆虫附着的影响,以期帮助人们深入地理解昆虫足的附着机制,并为其在仿生学等方面的应用提供理论依据。  相似文献   

2.
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conducive, to cell polarization thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cellsubstratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

3.
C Dahlgren 《Cell biophysics》1982,4(2-3):133-141
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conductive to cell polarization, thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cell-substratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

4.
Critical to biological processes such as membrane fusion and secretion, ion-lipid interactions at the membrane-water interface still raise many unanswered questions. Using reconstituted phosphatidylcholine membranes, we confirm here that multilamellar vesicles swell in salt solutions, a direct indication that salt modifies the interactions between neighboring membranes. By varying sample histories, and by comparing with data from ion carrier-containing bilayers, we eliminate the possibility that swelling is an equilibration artifact. Although both attractive and repulsive forces could be modified by salt, we show experimentally that swelling is driven primarily by weakening of the van der Waals attraction. To isolate the effect of salt on van der Waals interactions, we focus on high salt concentrations at which any possible electrostatic interactions are screened. By analysis of X-ray diffraction data, we show that salt does not alter membrane structure or bending rigidity, eliminating the possibility that repulsive fluctuation forces change with salt. By measuring changes in interbilayer separation with applied osmotic stress, we have determined, using the standard paradigm for bilayer interactions, that 1 M concentrations of KBr or KCl decrease the van der Waals strength by 50%. By weakening van der Waals attractions, salt increases energy barriers to membrane contact, possibly affecting cellular communication and biological signaling.  相似文献   

5.
The adhesion forces between various surfaces were measured using the "surface forces apparatus" technique. This technique allows for the thickness of surface layers and the adhesion force between them to be directly measured in controlled vapor or liquid environments. Three types of biological surfaces were prepared by depositing various lipid-protein monolayers (with thicknesses ranging from 1 to 4 nm) on the inert, molecularly smooth mica surface: (i) hydrophobic lipid monolayers; (ii) amphiphilic polyelectrolyte surfaces of adsorbed polylysine; and (iii) deposited bacterial S-layer proteins. The adhesion, swelling, and wetting properties of these surfaces was measured as a function of relative humidity and time. Initial adhesion is due mainly to the van der Waals forces arising from nonpolar (hydrophobic) contacts. Following adhesive contact, significant molecular rearrangements can occur which alter their hydrophobic-hydrophilic balance and increase their adhesion with time. Increased adhesion is generally enhanced by (i) increased relative humidity (or degree of hydration); (ii) increased contact time; and (iii) increased rates of separation. The results are likely to be applicable to the adhesion of many other biosurfaces, and show that the hydrophobicity of a lipid or protein surface is not an intrinsic property of that surface but depends on its environment (e.g., on whether it is in aqueous solution or exposed to the atmosphere), and on the relative humidity of the atmosphere. It also depends on whether the surface is in adhesive contact with another surface and-when considering dynamic (nonequilibrium) conditions-on the time and previous history of its interaction with that surface. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Many animals that locomote by legs possess adhesive pads. Suchorgans are rapidly releasable and adhesive forces can be controlledduring walking and running. This capacity results from the interactionof adhesive with complex mechanical systems. Here we presentan integrative study of the mechanics and adhesion of smoothattachment pads (arolia) in Asian Weaver ants (Oecophylla smaragdina).Arolia can be unfolded and folded back with each step. Theyare extended either actively by contraction of the claw flexormuscle or passively when legs are pulled toward the body. Regulationof arolium use and surface attachment includes purely mechanicalcontrol inherent in the arrangement of the claw flexor system. Predictions derived from a ‘wet’ adhesion mechanismwere tested by measuring attachment forces on a smooth surfaceusing a centrifuge technique. Consistent with the behavior ofa viscid secretion, frictional forces per unit contact arealinearly increased with sliding velocity and the increment stronglydecreased with temperature. We studied the nature and dimensions of the adhesive liquidfilm using Interference Reflection Microscopy (IRM). Analysisof ‘footprint’ droplets showed that they are hydrophobicand form low contact angles. In vivo IRM of insect pads in contactwith glass, however, revealed that the adhesive liquid filmnot only consists of a hydrophobic fluid, but also of a volatile,hydrophilic phase. IRM allows estimation of the height of theliquid film and its viscosity. Preliminary data indicate thatthe adhesive secretion alone is insufficient to explain theobserved friction and that rubbery deformation of the pad cuticleis involved.  相似文献   

7.
The adhesion of cells to surfaces plays a crucial role in processes related to motility and tissue growth. Nonspecific interactions with a surface, e.g., by electrostatic or van der Waals forces, can complement specific molecular interactions and can themselves support strong adhesion. In order to understand the mechanism by which cells establish an adhesive interface in the absence of specific proteins, we have studied the detachment kinetics of monocytic cells from glass surfaces coated with poly-l-lysine. We exposed adhering cells to a shear flow and studied their deformation and detachment trajectories. Our experiments reveal that between 20 and 60 parallel membrane tethers form prior to detachment from the surface. We propose that the extraction of tethers is the consequence of an inhomogeneous adhesion interface and model the detachment mechanism as the dynamic extrusion of cooperatively loaded tethers. In our model, individual tethers detach by a peeling process in which a zone of a few nanometers is loaded by the externally applied force. Our findings suggest that the formation of an inhomogeneous non-specific adhesion interface between a cell and its substrate gives rise to more complex dynamics of detachment than previously discussed.  相似文献   

8.
Many animals possess adhesive pads on their feet,which are able to attach to various substrates while controlling adhesive forces during locomotion.This review article studies the morphology of adhesive devices in animals,and the physical mechanisms of wet adhesion and dry adhesion.The adhesive pads are either ‘smooth' or densely covered with special adhesive setae.Smooth pads adhere by wet adhesion,which is facilitated by fluid secreted from the pads,whereas hairy pads can adhere by dry adhesion or wet adhesion.Contact area,distance between pad and substrate,viscosity and surface tension of the liquid filling the gap between pad and substrate are the most important factors which determine the wet adhesion.Dry adhesion was found only in hairy pads,which occurs in geckos and spiders.It was demonstrated that van der Waals interaction is the dominant adhesive force in geckos' adhesion.The bio-inspired applications derived from adhesive pads are also reviewed.  相似文献   

9.
Sticky prey capture threads are produced by many members of the spider infraorder Araneomorphae. Cribellar threads are plesiomorphic for this clade, and viscous threads are apomorphic. The outer surface of cribellar thread is formed of thousands of fine, looped fibrils. Basal araneomorphs produce non-noded cribellar fibrils, whereas more derived members produce noded fibrils. Cribellar fibrils snag and hold rough surfaces, but other forces are required to explain their adherence to smooth surfaces. Threads of Hypochilus pococki (Hypochilidae) formed of non-noded fibrils held to a smooth plastic surface with the same force under low and high humidities. In contrast, threads of Hyptiotes cavatus and Uloborus glomosus (Uloboridae) formed of noded fibrils held with greater force to the same surface at intermediate and high humidities. This supports the hypothesis that van der Waals forces allow non-noded cribellar fibrils to adhere to smooth surfaces, whereas noded fibrils, owing to the hydrophilic properties of their nodes, add hygroscopic forces at intermediate and high humidities. Thus, there appear to have been two major events in the evolution of adhesive mechanisms in spider prey capture thread: the addition of hydrophilic nodes to the fibrils of cribellar threads and the replacement of cribellar fibrils by viscous material and glycoprotein glue.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 1–8.  相似文献   

10.
Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.  相似文献   

11.
Here, we report the first direct observation of Van der Waals' attraction between biomembrane capsules using measurements of the free energy reduction per unit area of membrane-membrane contact formation. In these studies, the membrane capsules were reconstituted neutral (egg phosphatidylcholine) lipid bilayers of giant (greater than 10(-3) cm diam) vesicles. Micromanipulation methods were used to select and maneuver two vesicles into proximity for contact; after adhesion was allowed to occur, the extent of contact formation was regulated through the vesicle membrane tensions that were controlled by micropipette suction. The free energy reduction per unit area of contact formation was proportional to the membrane tension multiplied by a simple function of the pipette and vesicle dimensions. The free energy potential for Van der Waals attraction between the neutral bilayers in 120 mM NaCl solutions was 1.5 X 10(-2) ergs/cm2. Also, when human serum albumin was added to the medium in the range of 0-1 mg/ml, the free energy potential for bilayer-bilayer adhesion was not affected. Using published values for equilibrium spacing between lipid bilayers in multilamellar lipid-water dispersions and the theoretical equation for van der Waals attraction between continuous dielectric layers, we calculated the value for the Hamaker coefficient of the Van der Waals attraction to be 5.8 X 10(-14) ergs.  相似文献   

12.
A practical method for examining and calculating van der Waals forces is derived from Lifshitz'' theory. Rather than treat the total van der Waals energy as a sum of pairwise interactions between atoms, the Lifshitz theory treats component materials as continua in which there are electromagnetic fluctuations at all frequencies over the entire body. It is necessary in principle to use total macroscopic dielectric data from component substances to analyze the permitted fluctuations; in practice it is possible to use only partial information to perform satisfactory calculations. The biologically interesting case of lipid-water systems is considered in detail for illustration. The method gives good agreement with measured van der Waals energy of interaction across a lipid film. It appears that fluctuations at infrared frequencies and microwave frequencies are very important although these are usually ignored in preference to UV contributions. “Retardation effects” are such as to damp out high frequency fluctuation contributions; if interaction specificity is due to UV spectra, this will be revealed only at interactions across <200 angstrom (A). Dependence of van der Waals forces on material electric properties is discussed in terms of illustrative numerical calculations.  相似文献   

13.
In general, membrane-membrane adhesion involves specific molecular binding and cross-bridging reactions. The ideal, classical view is that near equilibrium the forces required to separate adhesive contacts are essentially equal to those induced in the membrane when the contact is formed. In contrast to the classical view, experimental observations often show that negligible levels of tension are induced by the adhesive contact even though the tension required to separate the contact is large enough to rupture the membrane. The deviation in tension levels associated with contact formation and separation appears to be due to the sparse distribution of strong molecular cross-bridges. Here, the mechanics of membrane-membrane adhesion and separation is developed for the case of discrete, kinetically trapped cross-bridges. The solution is obtained by numerical computation of the membrane contour that minimizes the total free energy (membrane elastic energy of deformation plus cross-bridge energies) in the contact zone. This solution is matched with the analytical solution for membrane stresses and geometry derived for the adjacent, unbridged zone. The results yield specific values of the macroscopic tension applied to the membrane in the plane region away from the contact zone and the microscopic angle at the edge of the contact zone. Two disparate values of the macroscopic tension are found: (a) the minimum tension required to separate the adherent membranes; and (b) the maximum tension induced in the membranes when the contact is formed (i.e., the level of tension at which the contact will just begin to spread).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Summary A system consisting of an interlacunar network and thick fibrils was demonstrated in the matrix of human fetal and neonatal hyaline cartilage, using an osmium-ferrocyanide mixture as a second fixative. The network appeared as irregular strands consisting of hyaluronidase-sensitive, amorphous and fine fibrillar material. The thick fibrils measured 75–125 μm in diameter, each appearing to consist of several collagen fibrils twisted into a cable and cemented by dense amorphous material. Strands of the network were seen to cross and focally distort the thick fibrils, suggesting that the strands exert some tensile forces on the thick fibrils. During the first year of life the network rapidly became undemonstrable, but the thick fibrils persisted into adulthood. This system of interlacunar network and thick fibrils appears to form an integral functional unit which may play an organizational tole in the formation of cartilagenous matrix during development. Furthermore, it may contribute to the mechanical strength of the coflagen framework in hyaline cartilage.  相似文献   

15.
Temperature-dependent van der Waals forces   总被引:3,自引:2,他引:1       下载免费PDF全文
Biological systems can experience a strong van der Waals interaction involving electromagnetic fluctuations at the low frequency limit. In lipid-water mixtures the free energy of this interaction is proportional to temperature, primarily involves an entropy change, and has qualitative features of a “hydrophobic bond.” Protein-protein attraction in dilute solution is due as much to low frequency proton fluctuation (Kirkwood-Shumaker forces) and permanent dipole forces as to high frequency (infrared and UV) van der Waals intreactions. These conclusions are described in terms of numerical calculations via the Lifshitz theory of van der Waals forces.  相似文献   

16.
17.
Physico-chemical surface characteristics and adhesive properties of a series of mutants of Streptococcus salivarius HB with defined cell surface structures were determined. Zeta potentials showed no relation either with the presence or absence of specific antigens on the bacterial cell surface, or with the adhesive properties of the cells. Hydrophobicity was assessed by surface free energy determination from measured contact angles, by adsorption to hexadecane and by hydrophobic interaction chromatography. Generally, the progressive removal of fibril subclasses from the cell surface resulted in a reduced hydrophobicity. However, specific fibrillar subclasses appeared to contribute to surface hydrophobicity to widely different extents. Bacterial adhesion to polymethylmethacrylate increased with increasing hydrophobicity of the mutants. However, adhesion to a more complex biological substratum, such as saliva-coated hydroxyapatite, correlated only partly with hydrophobicity. The organism, deprived of most of its fibrillar surface structures, clearly showed the least adhesion to hydrophobic ligands, to both polymethylmethacrylate and saliva-coated hydroxyapatite, and had a significantly higher surface free energy than the other mutants and the parent strain.  相似文献   

18.
Structures of hitherto unknown protein complexes can be predicted by docking the solved protein monomers. Here, we present a method to refine initial docking estimates of protein complex structures by a Monte Carlo approach including rigid-body moves and side-chain optimization. The energy function used is comprised of van der Waals, Coulomb, and atomic contact energy terms. During the simulation, we gradually shift from a novel smoothed van der Waals potential, which prevents trapping in local energy minima, to the standard Lennard-Jones potential. Following the simulation, the conformations are clustered to obtain the final predictions. Using only the first 100 decoys generated by a fast Fourier transform (FFT)-based rigid-body docking method, our refinement procedure is able to generate near-native structures (interface RMSD <2.5 A) as first model in 14 of 59 cases in a benchmark set. In most cases, clear binding funnels around the native structure can be observed. The results show the potential of Monte Carlo refinement methods and emphasize their applicability for protein-protein docking.  相似文献   

19.
20.
Aspects of spore production in the red algaCeramium   总被引:1,自引:1,他引:0  
Summary Tetraspore development from the post-meiotic to the mature stage has been studied using light and electron microscopy and histochemistry. The structure of the mature carpospore is identical to that of the tetraspore suggesting a similar developmental sequence.The tetrasporangial wall consists of 3 main fibrillar layers, the origin of the inner of which appears to be the wall-plasmalemma interface. The development of furrows cleaving the protoplast into 4 results in the formation of new plasmalemma and subsequently new wall fibrils. The Golgi apparatus is important in the formation of two well-defined substances. The first is fibrillar and is secretedvia vacuole-like structures into the sporangial wall. After spore release, this functions as a protective mucilaginous layer. The second has a distinctive fine structural morphology and probably functions as an adhesive.Observations on spore releasein vivo reveals a similar process for both types of spore. Each spore is surrounded by mucilage which may assist in initial attachment prior to the secretion of the adhesive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号