首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The ability of eight commercially available thermophilic DNA polymerases to sequentially incorporate fluorescently labeled nucleotides sequentially was analyzed by a gel based primer extension assay. Cy5-dUTP or a variant nucleotide in which the linker had been lengthened by 14 atoms between the dye and the nucleobase were compared. We found that the Cy5-dUTP with a longer linker resulted in longer primer extension lengths. Furthermore, some of the assayed polymerases are capable of extending the primer to the full or near full length of 30 nucleotides using dye-labeled nucleotides exclusively.  相似文献   

2.
3.
To increase the efficiency of photoaffinity labeling of DNA polymerases, a binary system of photoaffinity reagents was applied. Photoreactive radioactive primers were synthesized by DNA polymerases beta (pol beta) or DNA polymerase from Thermus thermophilus (pol Tte) using a template-primer duplex in the presence of a dTTP analogue containing 4-azidotetrafluorobenzoyl group linked via spacers of varying length to 5-position of uridine ring- 5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-amino-trans-propenyl-1]-2'-deoxyuridine-5'-triphosphate (FAB-4-dUTP) or 5-[N-[[(2,3,5,6-tetrafluoro-4-azidobenzoyl)-butanoyl]-amino]-trans-3-aminopropenyl-1]-2'-deoxyuridine-5'-triphosphate (FAB-9-dUTP). The reaction mixtures were UV irradiated (lambda = 365-450 nm) in the absence or presence of a dTTP analog, containing a pyrene moiety-5-[N-(4-(1-pyrenyl)-butylcarbonyl)-amino-trans-propenyl-1]-2'-deoxyuridine-5'-triphosphate (Pyr- 8-dUTP) or 5-[N-(4-(1-pyrenyl)-ethylcarbonyl)-amino-trans-propenyl-1]-2'-deoxyuridine-5'-triphosphate (Pyr-6-dUTP). The most efficient crosslinking of both DNA polymerases was observed in the case of photoreactive DNA primer, carrying the FAB-4-dUMP moiety at the 3'-end, and Pyr-6-dUTP as a sensitizer. The binary system of photoaffinity reagents allows increasing photoaffinity labeling of the both DNA polymerases in comparison to the primer crosslinking without photosensitizer.  相似文献   

4.
Ferrocene conjugates of dUTP for enzymatic redox labelling of DNA   总被引:1,自引:1,他引:0       下载免费PDF全文
Two ferrocene-labelled analogues of dTTP, 5-(3-ferrocenecarboxamidopropenyl-1) 2′-deoxyuridine 5′-triphosphate (Fc1-dUTP) and 5-(3-ferroceneacet-amidopropenyl-1) 2′-deoxyuridine 5′-triphosphate (Fc2-dUTP) have been produced to demonstrate the incorporation of redox labels into DNA by polymerases. Cyclic voltammetry indicates that the ferrocenyl moieties display reversible redox behaviour in aqueous buffer with E1/2 values of 398 (Fc1-dUTP) and 260 mV (Fc2-dUTP) versus Ag/AgCl. Primer extension by the proofreading enzymes Klenow fragment and T4 DNA polymerase shows that Fc1-dUTP is efficiently incorporated into DNA during synthesis, including incorporation of two successive modified nucleotides. Production of a 998 bp amplicon by Tth DNA polymerase demonstrates that Fc1-dUTP is also a satisfactory substrate for PCR. Despite its structural similarity, Fc2-dUTP acts predominantly as a terminator with the polymerases employed here. UV melting analysis of a 37mer duplex containing five Fc1-dU residues reveals that the labelled nucleotide introduces only a modest helix destabilisation, with Tm = 71 versus 75°C for the corresponding natural construct. Modified DNA is detected at femtomole levels using a HPLC system with a coulometric detector. The availability of simple and effective enzymatic labelling strategies should promote the further development of electrochemical detection in nucleic acid analysis.  相似文献   

5.
Cyanine dye dUTP analogs for enzymatic labeling of DNA probes.   总被引:5,自引:2,他引:3       下载免费PDF全文
Fluorescence in situ hybridization (FISH) has become and indispensable tool in a variety of areas of research and clinical diagnostics. Many applications demand an approach for simultaneous detection of multiple target sequences that is rapid and simple, yet sensitive. In this work, we describe the synthesis of two new cyanine dye-labeled dUTP analogs, Cy3-dUTP and Cy5-dUTP. They are efficient substrates for DNA polymerases and can be incorporated into DNA probes by standard nick translation, random priming and polymerase chain reactions. Optimal labeling conditions have been identified which yield probes with 20-40 dyes per kilobase. The directly labeled DNA probes obtained with these analogs offer a simple approach for multicolor multisequence analysis that requires no secondary detection reagents and steps.  相似文献   

6.
We describe here the enzyme-catalyzed, low-density labeling of DNAs with fluorescent dyes. Firstly, for "natural" template DNAs, dNTPs were partially substituted in the labeling reactions by the respective fluorophore-bearing analogs. The DNAs were labeled by PCR using Taq DNA polymerase. The covalent incorporation of dye-dNTPs decreased in the following order: rhodamine-green-5-dUTP (Molecular Probes, the Netherlands), tetramethylrhodamine-4-dUTP (FluoroRed, Amersham Pharmacia Biotech), Cy5-dCTP (Amersham Pharmacia Biotech). Exonucleolytic degradation by the 3'-->5' exonuclease activity of T7 DNA polymerase (wild type) in the presence of excess reduced thioredoxin proceeded to complete breakdown of the labeled DNAs. The catalytic cleavage constants determined by fluorescence correlation spectroscopy were between 0.5 and 1.5 s(-1) at 16 degrees C, normalized for the covalently incorporated dye-nucleotides. Secondly, rhodamine-green-X-dUTP (Roche Diagnostics), tetramethylrhodamine-6-dUTP (Roche Diagnostics), and Cy5-dCTP were covalently incorporated into the antisense strand of "synthetic" 218-b DNA template constructs (master sequences) at well defined positions, starting from the primer binding site, by total substitution for the naturally occurring dNTPs. The 218-b DNA constructs were labeled by PCR with a thermostable 3'-->5' exonuclease deficient mutant of the Tgo DNA polymerase which we have selected. The advantage of the special, synthetic DNA constructs as compared to natural DNAs lies in the possibility of obtaining tailor-made nucleic acids, optimized for testing the performance of exonucleolytic sequencing. The number of incorporated fluorescent nucleotides determined by complete exonucleolytic degradation and fluorescence correlation spectroscopy were six out of six possible incorporations for rhodamine-green-X-dUTP and tetramethylrhodamine-6-dUTP, respectively. Their covalent and base-specific incorporations were confirmed by the novel analysis methodology of re-sequencing (i.e. mobility-shift gel electrophoresis, reversion-PCR and re-sequencing) first developed in the paper F?ldes-Papp et al. (2001) and in this paper. This methodology was then used by other groups within the whole sequencing project.  相似文献   

7.
The transferase activity of non-proofreading DNA polymerases is a well-known phenomenon that has been utilized in cloning and sequencing applications. The non-templated addition of modified nucleotides at DNA blunt ends is a potentially useful feature of DNA polymerases that can be used for selective transformation of DNA 3′ ends. In this paper, we characterized the tailing reaction at perfectly matched and mismatched duplex ends with Cy3- and Cy5-modified pyrimidine nucleotides. It was shown that the best DNA tailing substrate does not have a perfect Watson–Crick base pair at the end. Mismatched duplexes with a 3′ dC were the most efficient in the Taq DNA polymerase-catalysed tailing reaction with a Cy5-modified dUTP. We further demonstrated that the arrangement of the dye residue relative to the nucleobase notably affects the outcome of the tailing reaction. A comparative study of labelled deoxycytidine and deoxyuridine nucleotides showed higher efficiency for dUTP derivatives. The non-templated addition of modified nucleotides by Taq polymerase at a duplex blunt end was generally complicated by the pyrophosphorolysis and 5′ exonuclease activity of the enzyme.  相似文献   

8.
A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis.  相似文献   

9.
A binary system of photoaffinity reagents was proposed earlier for highly efficient labeling of DNA polymerases by 5"-[32P]DNA primers. In the present study we demonstrate the feasibility of this approach to increase the efficiency of DNA polymerase labeling. A photoactive 2,3,5,6-tetrafluoro-4-azidobenzoyl (FAB) group was incorporated at the 3"-end of 5"-[32P]DNA primers synthesized by DNA polymerase or Tte in the presence of one of the dTTP analogs—FAB-4-dUTP, FAB-9-dUTP, or FAB-4-ddUTP. The reaction mixture was irradiated by light with wavelength of 334-365 nm (direct labeling) or 365-450 nm in the presence of photosensitizer, one of dTTP analogs containing a pyrene moiety, Pyr-6-dUTP or Pyr-8-dUTP. In the case of the binary system of photoaffinity reagents, a FAB group is activated by energy transfer from sensitizer localized in the dNTP-binding site of DNA polymerase in the triple complex, comprised by reagent, DNA polymerase, and Pyr-6(8)-dUTP. Direct activation of the FAB group under these conditions is negligible. The most efficient photolabeling of DNA polymerases was observed with a primer containing a FAB-4-dUMP group at the 3"-end, and Pyr-6-dUTP as a photosensitizer. Using 10-fold molar excess of photoreagent to DNA polymerase , the labeling efficiency was shown to achieve 60%, which is 2-fold higher than the efficiency of the direct DNA polymerase labeling under harsher conditions (334-365 nm).  相似文献   

10.
New types of double-headed 2′-deoxycytidine 5′-O-triphosphates (dCXCTPs) bearing another cytosine or 5-fluorocytosine linked through a flexible propargyl, homopropargyl or pent-1-ynyl linker to position 5 were prepared by the aqueous Sonogashira cross-coupling reactions of 5-iodo-dCTP with the corresponding (fluoro)cytosine-alkynes. The modified dCXCTPs were good substrates for DNA polymerases and were used for enzymatic synthesis of cytosine-functionalized DNA by primer extension or PCR. The cytosine- or fluorocytosine-linked DNA probes did not significantly inhibit DNA methyltransferases and did not cross-link to these proteins.  相似文献   

11.
Nucleoside triphosphates having a 3'-ONH? blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3'-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3'-ONH? group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3'-ONH? blocking group in "next generation sequencing."  相似文献   

12.
DNA polymerases are desired that incorporate modified nucleotides into DNA with diminished pausing, premature termination and infidelity. Reported here is a simple in vitro assay to screen for DNA polymerases that accept modified nucleotides based on a set of primer extension reactions. In combination with the scintillation proximity assay (SPA[trade]), this allows rapid and simple screening of enzymes for their ability to elongate oligonucleotides in the presence of unnatural nucleotides. A proof of the concept is obtained using pseudo-thymidine (psiT), the C-nucleoside analog of thymidine, as the unnatural substrate. The conformational properties of psiT arising from the carbon-carbon bond between the sugar and the base make it an interesting probe for the importance of conformational restraints in the active site of polymerases during primer elongation. From a pool of commercially available thermostable polymerases, the assay identified Taq DNA polymerase as the most suitable enzyme for the PCR amplification of oligonucleotides containing psiT. Subsequent experiments analyzing PCR performance and fidelity of Taq DNA polymerase acting on psiT are presented. This is the first time that PCR has been performed with a C-nucleoside.  相似文献   

13.
Z Zhu  J Chao  H Yu    A S Waggoner 《Nucleic acids research》1994,22(16):3418-3422
Directly labeled fluorescent DNA probes have been made by nick translation and PCR using dUTP attached to the fluorescent label, Cy3, with different length linkers. With preparation of probes by PCR we find that linker length affects the efficiency of incorporation of Cy3-dUTP, the yield of labeled probe, and the signal intensity of labeled probes hybridized to chromosome target sequences. For nick translation and PCR, both the level of incorporation and the hybridization fluorescence signal increased in parallel when the length of the linker arm is increased. Under optimal conditions, PCR yielded more densely labeled probes, however, the yield of PCR labeled probe decreased with greater linear density of labeling. By using a Cy3-modified dUTP with the longest linker under optimal conditions it was possible to label up to 28% of the possible substitution sites on the target DNA with reasonable yield by PCR and 18% by nick translation. A mechanism involving steric interactions between the polymerase, cyanine-labeled sites on template and extending chains and the modified dUTP substrate is proposed to explain the inverse correlation between the labeling efficiency and the yield of DNA probe synthesis by PCR.  相似文献   

14.
DNA polymerases are used for many applications and we comparatively investigated DNA synthesis activity of DNA polymerase I enzymes of Geobacillus caldoxylosilyticus TK4, Escherichia coli and Mycobacterium tuberculosis with DIG-11-dUTP using synthetic DNA substrates. We showed that Gca polymerase I and Klenow Fragment (KF) used DIG-11-dUTP instead of dTTP almost at the same ratio, but more efficiently than Mtb polymerase I. We considered that Gca polymerase I could be efficiently used to label a DNA oligonucleotide either internally or at the 3′-terminus by DIG-11-dUTP for the generation of non-radioactive labeled DNA substrates at higher temperature than KF. All three polymerases could not elongate the primer terminus after adding ddNTPs into DNA that is characteristic for all known DNA polymerase I enzymes.  相似文献   

15.
Butadiene is a ubiquitous environmental chemical carcinogen that when activated to its monoepoxide intermediate can react with the N3 position of cytosine, resulting in two stereoisomeric adducted bases that rapidly deaminate to N3 2′-deoxyuridine lesions. We have previously shown that replication of DNAs containing these adducts through mammalian cells resulted in 97% mutagenicity, predominantly C to T transitions. Since replicative DNA polymerases were blocked by these lesions in vitro, translesional polymerases were assessed for their ability to bypass these adducts. While polymerases ι, κ and ζ were significantly blocked one nucleotide prior to the lesion, pol η incorporated nucleotides opposite the adducts with a preference for insertion of a G or A. Following polymerase dissociation and reassociation, pol η was also able to extend primers with mispaired termini opposite the lesions, with extensions from the A and T mismatched primer termini being the most efficient. Pol ζ was also able to extend primers containing all mismatched nucleotides opposite the lesions, with the most efficient extension occurring off of the A mismatched primer.  相似文献   

16.
Successful PCR starts with proper priming between an oligonucleotide primer and the template DNA. However, the inevitable risk of mismatched priming cannot be avoided in the currently used primer system, even though considerable time and effort are devoted to primer design and optimization of reaction conditions. Here, we report a novel dual priming oligonucleotide (DPO) which contains two separate priming regions joined by a polydeoxyinosine linker. The linker assumes a bubble-like structure which itself is not involved in priming, but rather delineates the boundary between the two parts of the primer. This structure results in two primer segments with distinct annealing properties: a longer 5′-segment that initiates stable priming, and a short 3′-segment that determines target-specific extension. This DPO-based system is a fundamental tool for blocking extension of non-specifically primed templates, and thereby generates consistently high PCR specificity even under less than optimal PCR conditions. The strength and utility of the DPO system are demonstrated here using multiplex PCR and SNP genotyping PCR.  相似文献   

17.
Nucleoside triphosphates having a 3′-ONH2 blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3′-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3′-ONH2 group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3′-ONH2 blocking group in “next generation sequencing.”  相似文献   

18.
We have developed a novel allele-specific primer elongation protocol using a DNA polymerase on oligonucleotide chips. Oligonucleotide primers carrying polymorphic sites at their free 3'end were covalently bound to glass slides. The generation of single-stranded targets of genomic DNA containing single nuclotide polymorphisms (SNPs) to be typed was achieved by an asymmetric PCR reaction or exonuclease treatment of phosphothioate (PTO)-modified PCR products. In the presence of DNA polymerase and all four dNTPs, with Cy3-dUTP replacing dTTP, allele-specific extension of the immobilized primers took place along a stretch of target DNA sequence. The yield of elongated products was increased by repeated reaction cycles. We performed multiplexed assays with many small DNA targets, or used single targets of up to 4.4 kb mitochondrial DNA (mtDNA) sequence to detect multiple SNPs in one reaction. The latter approach greatly simplifies preamplification of SNP-containing regions, thereby providing a framework for typing hundreds of mtDNA polymorphisms.  相似文献   

19.
Here we describe template directed enzymatic synthesis of unique primers, avoiding the chemical synthesis step in primer walking. We have termed this conceptually new technique DENS (differential extension with nucleotide subsets). DENS works by selectively extending a short primer, making it a long one at the intended site only. The procedure starts with a limited initial extension of the primer (at 20-30 degrees C) in the presence of only two out of the four possible dNTPs. The primer is extended by 6-9 bases or longer at the intended priming site, which is deliberately selected, (as is the two-dNTP set), to maximize the extension length. The subsequent termination reaction at 60-65 degrees C then accepts the extended primer at the intended site, but not at alternative sites, where the initial extension (if any) is generally much shorter. DENS allows the use of primers as long as 8mers (degenerate in two positions) which prime much more strongly than modular primers involving 5-7mers and which (unlike the latter) can be used with thermostable polymerases, thus allowing cycle-sequencing with dye-terminators compatible with Taq DNA polymerase, as well as making double-stranded DNA sequencing more robust.  相似文献   

20.
To investigate the influence of the pyrimidine 2-keto group on selection of nucleotides for incorporation into DNA by polymerases, we have prepared two C nucleoside triphosphates that are analogues of dCTP and dTTP, namely 2-amino-5-(2'-deoxy-beta-d-ribofuranosyl)pyridine-5'-triphosphate (d*CTP) and 5-(2'-deoxy- beta-d-ribofuranosyl)-3-methyl-2-pyridone-5'-triphosphate (d*TTP) respectively. Both proved strongly inhibitory to PCR catalysed by Taq polymerase; d*TTP rather more so than d*CTP. In primer extension experiments conducted with either Taq polymerase or the Klenow fragment of Escherichia coli DNA polymerase I, both nucleotides failed to substitute for their natural pyrimidine counterparts. Neither derivative was incorporated as a chain terminator. Their capacity to inhibit DNA polymerase activity may well result from incompatibility with the correctly folded form of the polymerase enzyme needed to stabilize the transition state and catalyse phosphodiester bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号