首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BMP-4 inhibits neural differentiation of murine embryonic stem cells.   总被引:10,自引:0,他引:10  
Members of the transforming growth factor-beta superfamily, including bone morphogenetic protein 4 (BMP-4), have been implicated as regulators of neuronal and glial differentiation. To test for a possible role of BMP-4 in early mammalian neural specification, we examined its effect on neurogenesis in aggregate cultures of mouse embryonic stem (ES) cells. Compared to control aggregates, in which up to 20% of the cells acquired immunoreactivity for the neuron-specific antibody TuJ1, aggregates maintained for 8 days in serum-free medium containing BMP-4 generated 5- to 10-fold fewer neurons. The action of BMP-4 was dose dependent and restricted to the fifth through eighth day in suspension. In addition to the reduction in neurons, we observed that ES cell cultures exposed to BMP-4 contained fewer cells that were immunoreactive for glial fibrillary acidic protein or the HNK-1 neural antigen. Furthermore, under phase contrast, cultures prepared from BMP-4-treated aggregates contained a significant proportion of nonneuronal cells with a characteristic flat, elongated morphology. These cells were immunoreactive for antibodies to the intermediate filament protein vimentin; they were rare or absent in control cultures. Treatment with BMP-4 enhanced the expression of the early mesodermal genes brachyury and tbx6 but had relatively little effect on total cell number or cell death. Coapplication of the BMP-4 antagonist noggin counteracted the effect of exogenous BMP-4, but noggin alone had no effect on neuralization in either the absence or presence of retinoids. Collectively, our results suggest that BMP-4 can overcome the neuralizing action of retinoic acid to enhance mesodermal differentiation of murine ES cells.  相似文献   

3.
Multiplex quantitative PCR based on novel design of fluorescent primers is described. Fluorogenic primers are labeled with a single fluorophore on a base close to the 3′ end with no quencher required. A tail of 5–7 nt is added to the 5′ end of the primer to form a blunt-end hairpin when the primer is not incorporated into a PCR product. This design provides a low initial fluorescence of the primers that increases up to 8-fold upon formation of the PCR product. The hairpin oligonucleotides (ΔG from 1.6 to –5.8 kcal/mol) may be as efficient as linear primers and provide additional specificity to the PCR by preventing primer-dimers and mispriming. Multiple fluorogenic primers were designed by specialized software and used for real-time quantitation of c-myc and IL-4 cDNAs in the presence of reference genes such as β-actin, GAPDH and 18S rRNA. Targets of 10107 copies were detected with precision in PCR using FAM-labeled primers for variable genes and JOE-labeled primers for the reference genes. This method was also used to detect single nucleotide polymorphism of the human retinal degeneration gene by allele-specific PCR with end-point detection using a fluorescent plate reader or a UV-transilluminator. We conclude that fluorogenic mono-labeled primers are an efficient and cost-effective alternative to FRET-labeled oligonucleotides.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
The P19 cell line is a widely studied model of neural differentiation. When pluripotent P19 cells are cultured as aggregates in the presence of retinoic acid for 4 days, the cells commit to the neural fate, but have not yet undergone overt differentiation. Two-dimensional polyacrylamide gel electrophoresis was used to analyze cellular protein expression during this induction. Approximately 500 abundant polypeptides were analyzed. Seventeen polypeptides were upregulated during induction; several of these were significantly regulated 48 h after the addition of retinoic acid. No downregulations were observed. Fifteen of the 17 polypeptides continued to be expressed throughout terminal differentiation. The upregulation of 14 of the 17 polypeptides requires both retinoic acid and aggregation, which alone do not induce neural differentiation. Furthermore, these regulated polypeptides are expressed in neural tissue, suggesting they are associated with neural function in vivo. Embryonic stem cells, a totipotent line, also neurally differentiate in response to retinoic acid and aggregation. Comparison of embryonic stem cells to P19 cells shows that the two systems regulate a similar set of polypeptides and are thus likely to utilize a similar pathway. These studies are a step toward determining the full extent of regulation involved in the commitment of pluripotent cells to the neural fate. © 1996 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
The myogenic regulatory factors (MRFs), MyoD and myogenin, can induce myogenesis in a variety of cell lines but not efficiently in monolayer cultures of P19 embryonal carcinoma stem cells. Aggregation of cells expressing MRFs, termed P19[MRF] cells, results in an approximately 30-fold enhancement of myogenesis. Here we examine molecular events occurring during P19 cell aggregation to identify potential mechanisms regulating MRF activity. Although myogenin protein was continually present in the nuclei of >90% of P19[myogenin] cells, only a fraction of these cells differentiated. Consequently, it appears that post-translational regulation controls myogenin activity in a cell lineage-specific manner. A correlation was obtained between the expression of factors involved in somite patterning, including Wnt3a, Wnt5b, BMP-2/4, and Pax3, and the induction of myogenesis. Co-culturing P19[Wnt3a] cells with P19[MRF] cells in monolayer resulted in a 5- to 8-fold increase in myogenesis. Neither BMP-4 nor Pax3 was efficient in enhancing MRF activity in unaggregated P19 cultures. Furthermore, BMP-4 abrogated the enhanced myogenesis induced by Wnt signaling. Consequently, signaling events resulting from Wnt3a expression but not BMP-4 signaling or Pax3 expression, regulate MRF function. Therefore, the P19 cell culture system can be used to study the link between somite patterning events and myogenesis.  相似文献   

16.
17.
18.
Bone morphogenetic proteins-2 and -4 (BMPs-2 and -4) are transforming growth factor beta-related proteins that can induce bone formation in vivo. We observed that the level of endogenous BMP-2 mRNA increased an average of 11-fold on differentiation of F9 embryonal carcinoma cells into parietal endoderm after treatment with retinoic acid (RA) and cAMP, whereas the message for the closely related BMP-4 decreased 12-fold after this treatment. Therefore, the effects of exogenous recombinant BMP-2 protein on the RA-induced differentiation of F9 embryonal carcinoma cells were investigated. BMP-2 addition altered the growth and morphology of RA-treated but not untreated cells. Moreover, the abundance of several messages was affected by exogenous BMP-2 treatment. Notably, the BMP-2 and -4 messages themselves were reduced by the addition of exogenous BMP-2. The observations suggest that RA, which is known to affect bone morphogenesis, may regulate the osteoinductive proteins, BMP-2 and -4. Furthermore, BMP-2 and -4 may be involved in preimplantation embryogenesis.  相似文献   

19.
Structural characterization of Escherichia coli sialic acid synthase   总被引:7,自引:0,他引:7  
Wnt-1, the vertebrate counterpart of the Drosophila wingless gene, plays an important role in the early morphogenesis of neural tissues. In this report, we have shown that overexpression of Wnt-1 can direct embryonic carcinoma P19 cells to differentiate into neuron-like cells in the absence of retinoic acid. Immunocytochemistry showed that these cells expressed neuronal markers, such as the neurofilament (NF) and microtubule-associated protein 2 (MAP2), but failed to express the glial cell marker, glial fibrillary acidic protein (GFAP). RT-PCR revealed that two basic helix-loop-helix (bHLH) genes, Mash-1 and Ngn-1, were up-regulated during the differentiation stage of Wnt-1-overexpressing P19 cells. These results suggest that the Wnt-1 gene promotes neuronal differentiation and inhibits gliogenesis during the neural differentiation of P19 cells, and that neural bHLH genes might be involved in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号