首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
G Beschiaschvili  J Seelig 《Biochemistry》1992,31(41):10044-10053
The binding of the cyclic peptide (+)-D-Phe1-Cys2-Phe3-D-Trp4-(+)-Lys5-Thr6- Cys7-Thr(ol)8, a somatostatin analogue (SMS 201-995), and the potential-sensitive dye 2-(p-toluidinyl)naphthalene-6-sulfonate (TNS) to lipid membranes was investigated with high-sensitivity titration calorimetry. The binding enthalpy of the peptide was found to vary dramatically with the vesicle size. For highly curved vesicles with a diameter of d congruent to 30 nm, the binding reaction was enthalpy-driven with delta H congruent to -7.0 +/- 0.3 kcal/mol; for large vesicles with more tightly packed lipids, the binding reaction became endothermic with delta H congruent to +1.0 +/- 0.3 kcal/mol and was entropy-driven. In contrast, the free energy of binding was almost independent of the vesicle size. The thermodynamic analysis suggests that the observed enthalpy-entropy compensation of about 8 kcal/mol can be related to a change in the internal tension of the bilayer and is brought about by an entropy increase of the lipid matrix. The "entropy potential" of the membrane may have its molecular origin in the excitation of the hydrocarbon chains to a more disordered configuration and may play a more important role in membrane partition equilibria than the classical hydrophobic effect. The binding of the peptide to the membrane surface induced a pK shift of the peptide terminal amino group. Neutral membranes were found to destabilize the NH3+ group, leading to a decrease in pK; negatively charged membranes, generated an apparent increase in pK due to the increase in proton concentration near the membrane surface. No pK shifts were seen for TNS. Titration calorimetry combined with the Gouy-Chapman theory can be used to determine both the reaction enthalpy and the binding constant of the membrane-binding equilibrium.  相似文献   

2.
3.
We have previously observed that the hydrophobic polyelectrolyte poly(2-ethylacrylic acid) solubilizes lipid membranes in a pH-dependent manner, and we have exploited this phenomenon to prepare lipid vesicles that release their contents in response to pH, light, or glucose (Thomas, J. L., and D. A. Tirrell. Acc. Chem. Res. 25:336-342, 1992). The physical basis for the interaction between poly(2-ethylacrylic acid) and lipid membranes has been explored using surface tensiometry and fluorimetry. Varying the polymer concentration results in changes in surface activity and membrane binding that correlate with shifts in the critical pH for membrane solubilization. Furthermore, the binding affinity is reduced as the amount of bound polymer increases. These results are consistent with a hydrophobically driven micellization process, similar to those observed with apolipoproteins, melittin, and other amphiphilic alpha-helix-based polypeptides. The absence of specific secondary structure in the synthetic polymer suggests that amphiphilicity, rather than structure, is the most important factor in membrane micellization by macromolecules.  相似文献   

4.
To explore for the existence of an auxiliary hydrophobic binding register remote from the active site of PSMA a series of phenylalkylphosphonamidate derivatives of glutamic acid were synthesized and evaluated for their inhibitory potencies against PSMA. Both the phenyl- and benzylphosphonamidates (1a and 1b) exhibited only modest inhibitory potency against. The phenethyl analog 1c was intermediate in inhibitory potency while inhibitors possessing a longer alkyl tether from the phenyl ring, resulted in markedly improved K(i) values. The greatest inhibitory potency was obtained for the inhibitors in which the phenyl ring was extended furthest from the central phosphorus (1f, n=5 and 1g, n=6). The slightly serrated pattern that emerged as the alkyl tether increased from three to six methylene units suggests that inhibitory potency is not simply correlated to increased hydrophobicity imparted by the phenylalkyl chain, but rather that one or more hydrophobic binding registers may exist remote from the substrate recognition architecture in the active site of PSMA.  相似文献   

5.
We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution.  相似文献   

6.
Positively charged hydrophobic spin labels have been synthesized which respond to transmembrane potentials in sonicated liposomes. Electron paramagnetic resonance spectroscopy is used to show that the distribution of these probes between aqueous and membrane phases changes as a function of transmembrane potential. When liposomes are made more inside-negative, the fraction of membrane associated probe increases while the fraction of probe in the aqueous phase decreases. The results are in quantitative agreement with a simple equilibrium thermodynamic theory which allows estimation of absolute transmembrane potentials in phospholipid vesicles.  相似文献   

7.
Lipid--protein multiple binding equilibria in membranes   总被引:3,自引:0,他引:3  
Phospholipids at the lipid--protein interface of membrane proteins are in dynamic equilibrium with fluid bilayer. In order to express the number of binding sites (N) and the relative binding constants (K) in terms of measurable quantities, the equilibrium is formulated as an exchange reaction between lipid molecules competing for hydrophobic sites on the protein surface. Experimental data are reported on two integral membrane proteins, cytochrome oxidase and (Na,-K)-ATPase, reconstituted into defined phospholipids. Electron spin resonance measurements on reconstituted preparations of beef heart cytochrome oxidase in 1,2-dioleoyl-sn-3-phosphatidylcholine containing small quantities of the spin-labeled phospholipid 1-palmitoyl-2-(14-proxylstearoyl)-sn-3-phosphatidylcholine (PC*) gave a linear plot of bilayer/bound PC* vs. the lipid/protein ratio as predicted by the theory, with K congruent to 1 and N = 40 (normalized to heme aa3). This demonstrates that the spin-label moiety attached to the hydrocarbon chain does not significantly perturb the binding equilibria. In the second experimental system, (Na,K)-ATPase purified from rectal glands of Squalus acanthias was reconstituted with defined phosphatidylcholines as the lipid solvent and spin-labeled phospholipids with choline or serine head groups (PC*, PS*) as the solute. The (Na,K)-ATPase has a larger number of lipid binding or contact sites (N = 60-65 per alpha 2 beta 2 dimer) and exhibits a detectably larger average binding constant for the negatively charged phosphatidylserine than for the corresponding phosphatidylcholine. These results show that a multiple equilibria, noninteracting site binding treatment can account for the behavior of lipids exchanging between the protein surface and the lipid bilayer. Selective sites among a background of nonselective sites are experimentally detectable as a change in the measured relative binding constant.  相似文献   

8.
Summary The permeability and partition coefficients of tetraphenylarsonium (TPA) and several other organic cations were studied in the human erythrocyte using an ion-selective electrode. The permeability constant for the different cations could be explained quite well by differences in oil/water partition coefficients. No evidence for facilitated transport could be found. Binding of the organic ions occurred to both the cell membrane and to intracellular contents. Partitioning to the membrane remained relatively constant despite variation from ion intracellular binding with blood samples from different donors. TPA flux is stimulated by substoichiometric amounts of tetraphenylboron and other organic anions, suggesting an ion-pairing mechanism.  相似文献   

9.
In order to clarify the effect of degree of substitution of ionic and hydrophobic group on the polyelectrolytic behavior of polysaccharides, potentiometric titration and activity measurement of counterions were made for carboxymethyldextran (Cm-dextran) having various degrees of substituted carboxyl group and for carboxymethylbenzyldextran (Cm-Bzl-dextran) containing various degrees of substituted benzyl group. From the shape of titration curve, no conformational change was observed for both Cm-dextran and Cm-Bzl-dextran. The pK0 value of Cm-dextran was independent of the degree of the degree of substituted carboxy group. However, the pK0 of Cm-Bzl-dextran increased with an increasing degree of substituted benzyl group. The suppression of dissociation of a carboxyl group, caused by the surrounding hydrophobic groups, was discussed mainly in terms of the change of water structure around such groups. From the results of activity measurement for counterions of these dextran derivatives, we proposed the possibility of ion selectivity based on the hydrophobicity.  相似文献   

10.
Ligand binding and internal equilibria in proteins   总被引:13,自引:0,他引:13  
G Weber 《Biochemistry》1972,11(5):864-878
  相似文献   

11.
A modified multiple binding equilibria treatment is presented that allows determination of thermodynamic parameters of the interaction of phospholipids with integral membrane proteins solubilized in excess detergent. Lipid binding is modeled as a series of exchange reactions between lipid molecules and detergent molecules at the hydrophobic protein surface. A general equation is derived which expresses a relative association constant (K) and the total number of contact sites at the lipid-protein interface (N) in terms of experimentally measurable variables. A useful simplification of the general equation occurs when the amount of detergent is high relative to the total number of lipid binding sites in the sample. Computer simulations show that in cases we have examined there appears to be an experimentally accessible range of detergent to protein molar ratios where the approximation at high detergent is useful for analyzing experimental data. This model is used to examine the competition between cholate and spin-labeled phospholipids for the hydrophobic surfaces of bovine heart cytochrome c oxidase. We find, for example, that K = 12 +/- 2 for phosphatidylcholine relative to cholate (i.e., the cholate molecules are relatively easily displaced by membrane lipids). This helps to explain the experimental observation that cholate is an effective detergent both for solubilizing cytochrome c oxidase and for reconstituting this protein into a defined lipid bilayer environment. An excess of cholate readily displaces almost all of the native phospholipids, and the protein is dispersed in cholate micelles. However, when phospholipids are added back, the cholate molecules at the protein surface are replaced because of the higher relative binding of the phospholipids. Observed differences between the behavior of phosphatidylcholine and phosphatidylglycerol suggest that reconstitution in cholate is a selective process in which detergent molecules in localized areas on the protein surface are more readily displaced by certain phospholipids.  相似文献   

12.
13.
One of the fundamental properties of biological membranes is the high lateral integrity provided by the lipid bilayer, the structural core and the foundation of their barrier function. This tensile strength is due to the intrinsic properties of amphiphilic lipid molecules, which spontaneously self-assemble into a stable bilayer structure due to the hydrophobic effect. In the highly dynamic life of cellular membranes systems, however, this integrity has to be regularly compromised. One of the emerging puzzles is the mechanism of localized rupture of lipid monolayer, the formation of tiny hydrophobic patches and flipping of lipid tails between closely apposed monolayers. The energy cost of such processes is prohibitively high, unless cooperative deformations in a small membrane patch are carefully organized. Here we review the latest experimental and theoretical data on how such deformations can be conducted, specifically describing how elastic stresses yield tilting of lipids leading to cooperative restructuring of lipid monolayers. Proteins specializing in membrane remodeling assemble into closely packed circular complexes to arrange these deformations in time and space.  相似文献   

14.
H Han  J M Schurr 《Biopolymers》1974,13(2):381-389
A grand-partition function method employed previously for the study of cooperative binding of nucleosides to polynucleotides is generalized to include the effect of changes in the polymer concentration, as well as the effect of changes in the nucleoside concentration. This method is applied to compute isotherms for the binding of deoxyadenosine by polyuridylic acid at various total concentrations of polyuridylic acid. It is found that these isotherms are extremely insensitive to the polymer concentration, as commonly assumed heretofore, and as demonstrated experimentally (to some degree) by Davies and Davidson. However, the conclusion inferred by Davies and Davidson that the complexes must be unimolecular in polyuridylic acid is now seen to be clearly unwarranted, though it remains still a viable possibility, until data over a much wider range of polyuridylic acid concentrations become available.  相似文献   

15.
16.
The structure of annexin V, crystallised in the presence of two calcium or barium ions for each protein molecule, was solved by molecular replacement to 0.24 nm resolution. The two metal ions are found in domains I and IV, i.e. on the same side of the channel that lies in the centre of the molecule. The structures of the barium and calcium form are extremely close, the only differences localised in the metal-binding sites that lie on the surface of the molecule. The occupancies of the metal ions, however, are lower for barium than for calcium, expressing the lower affinity of the protein for the former. The packing of the annexin molecules in the crystal asymmetric unit may represent a model for the calcium driven association of membrane-bound annexins that leads to membrane fusion.  相似文献   

17.
The adsorption of nonionic surfactants on hide powder previously treated with anionic surfactants has been studied. The adsorption of nonionic surfactants takes place through hydrophobic interactions. A mechanism has been proposed for this interaction, assuming that the nonionic surfactant has been fixed by means of secondary adsorption (hydrophobic interaction) after the primary adsorption of the anionic surfactant (ionic and hydrophobic interaction) which makes it possible.  相似文献   

18.
When peripheral proteins bind to phospholipid membranes lacking discrete binding sites, steric repulsion between bound protein molecules may result in a reduction of the surface area available to additional bound protein by an amount significantly greater than the actual area occupied by bound protein. An approximate treatment of this effect demonstrates that neglect of area exclusion by bound protein may lead to significant errors in the evaluation of equilibrium association constants and the fractional coverage of membrane surface area.  相似文献   

19.
Immunoblotting of hydrophobic integral membrane proteins   总被引:4,自引:0,他引:4  
For diagnosis and research purposes it is frequently desirable to measure by immunoblotting small amounts of proteins in complex mixtures such as tissue biopsy homogenates. Standard immunoblot procedures that give excellent results for soluble proteins unexpectedly gave low and irreproducible signals with some hydrophobic membrane proteins. We found that this was due to inefficient electrophoretic transfer to nitrocellulose, which could be corrected by modification of the transblot buffer. Hydrophobic integral membrane proteins of peroxisomes as well as other rat and human liver proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose filters. The nitrocellulose-bound proteins were detected both by staining and by immunoblotting with an antiserum against the 22-kDa integral membrane protein of peroxisomes plus 125I-labeled protein A. A modified transblot buffer with 0.7 M glycine and 25 mM Tris (pH 7.7) but no methanol allowed use of a much shorter transfer time and strikingly improved the electrophoretic transfer of membrane proteins such that a peroxisomal integral membrane protein could be easily detected in human liver biopsy homogenates.  相似文献   

20.
N Janes  J W Hsu  E Rubin  T F Taraschi 《Biochemistry》1992,31(39):9467-9472
A generalized, colligative thermodynamic framework is used to treat the action of solutes on cooperative membrane equilibria. Configurational entropy, the randomness imparted by solutes through the partitioning or mixing process, is implicated as the energetic driving force for the action of anesthetics on cooperative membrane equilibria. The equilibria predicted to be most sensitive to solute action--in which the dilute solute causes a perturbation equivalent to a large change in temperature--are (1) low-enthalpy processes that coincide with (2) large partitioning differences between states. The model stresses that solutes do not act at a single site, but on both states in an equilibrium, and that the perturbation is determined by the difference in entropy. Evidence for the thermodynamic framework is obtained from the partitioning behavior of the general anesthetic 1-hexanol into a model lecithin (DMPC; 1,2-dimyristoyl-sn-glycero-3-phosphocholine) membrane as a function of temperature and alcohol concentration. The low-enthalpy equilibrium between the gel (L beta') and ripple states (P beta') (pretransition) is more sensitive to 1-hexanol than the high-enthalpy equilibrium between the ripple (P beta') and fluid bilayer states (L alpha) (main transition). The perturbations of both equilibria are accurately described by the colligative thermodynamic framework. The results suggest that alcohols and anesthetics act through entropy to upset the natural thermal balance that maintains native membrane architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号