首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinyl palmitate hydrolase (RPH) activity of bovine tissues was estimated from retinol formation following incubation of tissue homogenates with all-trans retinyl palmitate. The quantity of retinol produced in the incubation mixture was analyzed by high-performance liquid chromatography. RPH activities of retinal pigment epithelium (RPE), liver, retina, muscle and brain were 194.2, 138.0, 72.5, 25.0 and 5.1 units/gm protein respectively. The RPH activity in the retina was far above that attributable solely to RPE contaminations. The presence of RPH in the retina suggests that retina can utilize retinyl esters for the formation of visual pigments and/or cellular metabolism.  相似文献   

2.
S Takase  T Goda  H Yokogoshi  T Hoshi 《Life sciences》1992,51(18):1459-1466
A study was conducted to investigate the effects of a simulated weightlessness induced by chronic immobilization on vitamin A status. To simulate the stress condition of weightlessness, rats were suspended for 10 days in a special jacket to which metal chains were attached. Animals received a commercial stock diet. Control rats were pair-fed in reference to the suspended rats. As compared with the control, prolonged immobilization resulted in a decrease in body weight gain and an increase in adrenal weight occurred. In the suspended rats, serum concentrations of retinol and retinol-binding protein (RBP) declined. Hepatic retinyl palmitate content increased, and the hepatic retinol level was decreased. The prolonged immobilization led to significantly reduced retinyl palmitate levels in the testis and lung as well as lowered testicular retinol levels. The results suggest that the stress state induced by prolonged immobilization caused accumulation of hepatic retinyl palmitate, decreasing the serum retinol concentration and retinyl ester content in the extrahepatic tissues.  相似文献   

3.
Microsomal cytochrome P-450-dependent activities in the kidney of fish starved for 6 weeks were significantly lower than in fed fish whereas these activities in the liver were only depressed after 12 weeks of starvation. Hepatic cytochrome P-450-dependent activities were depressed to varying extents after 12 weeks of starvation when different substrates were used. The content of hepatic cytochrome P-450 was not affected by starvation. Hepatic UDP-glucuronosyl transferase activities were not affected by starvation. Induction of several hepatic cytochrome P-450-dependent activities by treatment of fish with beta-naphthoflavone was not influenced by starvation. In the kidneys of fish starved for 12 weeks induced levels of cytochrome P-450-dependent benzo(a)pyrene hydroxylase activities were significantly lower than in the kidneys of fed induced fish.  相似文献   

4.
The main retinoids and some binding proteins and enzymes involved in retinol metabolism have been quantified in different types of rat liver cells. Hepatic perisinusoidal stellate cells contained 28-34 nmol of retinoids/10(6) cells, and parenchymal liver cells contained 0.5-0.8 nmol of retinoids/10(6) cells, suggesting that as much as 80% of more of total liver retinoids might be stored in stellate cells with the rest stored in parenchymal cells. Isolated endothelial cells and Kupffer cells contained very low levels of retinoids. More than 98% of the retinoids recovered in stellate cells were retinyl esters. Isolated parenchymal and stellate cell preparations both contained considerable retinyl palmitate hydrolase and acyl-CoA:retinol acyltransferase activities. Parenchymal cells accounted for about 75-80% of the total hepatic content of these two enzyme activities, with the rest located in stellate cells. On a cell protein basis, the concentrations of both of these activities were much greater in stellate cells than in parenchymal cells. In contrast, cholesteryl oleate and triolein hydrolase activities were fairly evenly distributed in all types of liver cells. Large amounts of cellular retinol binding proteins were also found in parenchymal and stellate cells. Although parenchymal cells accounted for more than 90% of hepatic cellular retinol binding protein, the concentration of the protein in stellate cells (per unit protein) was 22 X greater than that in parenchymal cells. Stellate cells were also enriched in cellular retinoic acid binding protein. Thus, both parenchymal and stellate cells contain substantial amounts of retinoids and of the enzymes and intracellular binding proteins involved in retinol metabolism. Stellate cells are particularly enriched in these several components.  相似文献   

5.
We studied the interactions between the perfluorinated fatty acid nonadecafluoro-n-decanoic acid (NDFDA) and the cell wall-less procaryote Acholeplasma laidlawii, which were cultured in an identical medium base but with different serum supplements. When grown in mycoplasma media supplemented with PPLO serum fraction (Difco Laboratories, Detroit, Mich.), A. laidlawii was rapidly killed by low concentrations of toxicant (less than 1.0 mM). At higher concentrations (greater than 10 mM), NDFDA treatment appeared to lyse cells. A. laidlawii cells grown in horse serum-supplemented mycoplasma media were both killed and lysed at the same NDFDA concentration (greater than 10 mM). These data suggest that this perfluorinated fatty acid can be cytotoxic and cytolytic to mycoplasmas. Changes in active concentrations occurred in parallel with changes in growth medium serum supplementation, which is known to alter mycoplasma membrane composition. We propose that NDFDA interacts with the membranes of A. laidlawii cells, resulting in cell death or cell lysis or both.  相似文献   

6.
Upregulation of serum retinol in experimental acute renal failure   总被引:1,自引:0,他引:1  
T H Gerlach  M H Zile 《FASEB journal》1990,4(8):2511-2517
Serum vitamin A homeostasis was studied in rats with nonfiltering kidneys prepared by ligation of renal arteries. Within 1-2 h of acute renal failure, the serum retinol level increased by 11-73% and was maintained for at least 4 h. More than 90% of the increase in serum retinol was associated with retinol in the retinol binding protein-transthyretin (RBP-TTR) complex. The activities of acyl-CoA:retinol acyltransferase and retinyl-palmitate hydrolase were not altered by short-term acute renal failure. Oral administration of 3H-labeled retinol 3 h before surgery resulted in 350% more tritium in the serum retinol-RBP-TTR complex of rats with acute renal failure as compared to sham-operated rats; this increase represented the fraction of retinol in RBP-TTR contributed by hepatic retinol from newly absorbed 3H-labeled retinol. Total retinol in the retinol-RBP-TTR complex was increased by only 60%. We conclude that short-term acute renal failure causes rapid upregulation of serum retinol-RBP-TTR; the extent of the increase depends on the magnitude of hepatic vitamin A stores, particularly the retinol pools. We hypothesize that kidney modulates the regulation of hepatic release of retinol-RBP from the pool of newly acquired retinol.  相似文献   

7.
A Liss  J C Pfeil    D Levitt 《Applied microbiology》1987,53(6):1236-1240
We studied the interactions between the perfluorinated fatty acid nonadecafluoro-n-decanoic acid (NDFDA) and the cell wall-less procaryote Acholeplasma laidlawii, which were cultured in an identical medium base but with different serum supplements. When grown in mycoplasma media supplemented with PPLO serum fraction (Difco Laboratories, Detroit, Mich.), A. laidlawii was rapidly killed by low concentrations of toxicant (less than 1.0 mM). At higher concentrations (greater than 10 mM), NDFDA treatment appeared to lyse cells. A. laidlawii cells grown in horse serum-supplemented mycoplasma media were both killed and lysed at the same NDFDA concentration (greater than 10 mM). These data suggest that this perfluorinated fatty acid can be cytotoxic and cytolytic to mycoplasmas. Changes in active concentrations occurred in parallel with changes in growth medium serum supplementation, which is known to alter mycoplasma membrane composition. We propose that NDFDA interacts with the membranes of A. laidlawii cells, resulting in cell death or cell lysis or both.  相似文献   

8.
Iodine excess is emerging as a new focus. A better understanding of its hazardous effects on the liver will be of great benefit to health. The aim of this study is to illustrate the effects of iodine excess on hepatic lipid homeostasis and explore its possible mechanisms. One hundred twenty BaLB/c mice were given iodine at different levels (0, 0.3, 0.6, 1.2, 2.4, and 4.8 mg I/L) in drinking water for 1 or 3 months. Lipid parameters and serum thyroid hormones were measured. Hepatic type 1 deiodinase activity and oxidative stress parameters were evaluated. The mRNA expression of sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) was detected by real-time polymerase chain reaction. Dose-dependent increase of hepatic triglyceride content was detected (r?=?0.680, P?<?0.01) in iodine-loaded groups. Evident hepatic steatosis was observed in 2.4 and 4.8 mg I/L iodine-loaded groups. The activities of antioxidant enzymes (glutathione peroxidase and superoxide dismutase) were decreased, and the malondialdehyde level was increased by excessive iodine in both serum and liver in a dose-dependent manner, accompanying the decrease of hepatic D1 activity. That resulted in the increase of serum total thyroxine and the decrease of serum total triiodothyronine in iodine-loaded groups. The mRNA expression of SREBP-1c and FAS was increased in iodine-loaded groups in response to the change of serum triiodothyronine. Present findings demonstrated that iodine excess could dose dependently induce hepatic steatosis. Furthermore, our data suggested that the disturbance of thyroid hormone metabolism involving oxidative stress may play a critical role in iodine excess-induced hepatic steatosis.  相似文献   

9.
A study was conducted to determine the levels and distributions of retinoids, retinol-binding protein (RBP), retinyl palmitate hydrolase (RPH), cellular retinol-binding protein (CRBP), and cellular retinoic acid-binding protein (CRABP) in different types of isolated liver cells. Highly purified fractions of parenchymal, fat-storing (stellate), endothelial, and Kupffer cells were isolated in high yield from rat livers. The retinoid content of each fraction was measured by HPLC analysis. RBP, CRBP, and CRABP were measured by sensitive and specific radioimmunoassays, and RPH activity was measured by a sensitive microassay. The concentrations of each parameter expressed per 10(6) parenchymal or fat-storing cells were, respectively: retinoids, 1.5 and 83.9 micrograms of retinol equivalents; RBP, 138 and 7.4 ng; RPH, 826 and 1152 pmol FFA formed hr-1; CRBP, 470 and 236 ng; and CRABP, 5.6 and 8.7 ng. When these data were expressed on the basis of per unit mass of cellular protein, the concentrations of RPH, CRBP, and CRABP in the fat-storing cells, which contain 10-fold less protein than the large parenchymal cells, were seen to be greatly enriched over parenchymal cells. The parenchymal cells contained approximately 9% of the total retinoids, 98% of the total RBP, 90% of the total RPH activity, 91% of the total CRBP, and 71% of the total CRABP found in the liver. The fat-storing cells accounted for approximately 88% of the total retinoids, 0.7% of the total RBP, 10% of the RPH activity, 8% of the total CRBP, and 21% of the CRABP in the liver. The endothelial and Kupffer cell fractions contained very low levels of all of these parameters. Thus, the large and abundant parenchymal cells account for greater than 70% of the liver's RBP, RPH, CRBP, and CRABP; but the much smaller and less abundant fat-storing cells contain the majority of hepatic retinoids and greatly enriched concentrations of RPH, CRBP, and CRABP.  相似文献   

10.
Oxygen supply was corrected in rabbits during the hepatic ischemia/reperfusion by means of different breathing mixtures: hypoxic (14.8 % O(2)+85.2 % N(2)), hyperoxic (78 % O(2)+20.2 % N(2)+ 1.8 % CO(2)), or hypercapnic (5 % CO(2) in air). Hepatic ischemia was induced for 30 min by ligation of hepatic artery, reperfusion period lasted 120 min. Indices of blood oxygen transport (p50(act), pCO(2), pH, pO(2), etc.) and prooxidant-antioxidant balance (Schiff bases, conjugated dienes, catalase, retinol, alpha-tocopherol) were measured in the blood and liver. The severity of reperfusion damage was evaluated by the activities of alanine and aspartate aminotransferases (ALT, AST) in the blood. Hepatic ischemia/reperfusion resulted in higher p50(act) in hepatic venous and mixed venous blood in all experimental groups. The changes of p50(act) were most marked in the hypercapnic group and were the weakest in the hypoxic group. The rise in p50(act) was accompanied by higher levels of lipid peroxidation products, ALT and AST in blood and liver homogenates, and by a simultaneous fall of alpha-tocopherol and retinol concentrations, except in the hypoxic group. Catalase activity at the end of reperfusion increased under normoxia, decreased under hyperoxia or hypercapnia and did not change under hypoxia. The moderate hypoxia during reperfusion was accompanied by a better balance between the mechanisms of reactive oxygen species production and inactivation that may be observed by optimal changes in p50act and reduced the hepatic damage in this pathological condition.  相似文献   

11.
Acetaminophen (APAP) with or without ascorbyl stearate (AS) or ascorbyl palmitate (AP) was administered by gavage to male Swiss-Webster mice at a dose of 600 mg/kg for each chemical. The biochemical markers of hepatotoxicity, serum transaminases (serum glutamate pyruvate transaminase [SGPT], serum glutamate oxaloacetic transaminase [SGOT]) and serum isocitrate dehydrogenase (SICD) activities were monitored after APAP and APAP + AP or AS dosing. There were significant reductions in serum transaminase and SICD activities in the APAP- + ascorbate ester-treated animals as compared to APAP-positive controls. Oral coadministration of APAP with AP or AS did not prevent the initial hepatic GSH depletion (15 min-4 hr postdosing). However, hepatic GSH content began to rise in the APAP + AS or AP-treated animals at 4 hr and reached control values within 12 hr postdosing. Urinary mercapturate conjugates were also significantly higher in the APAP + AP or AS-treated animals as compared to APAP alone when measured over a 60-min postdosing period. Plasma sulfobromophthalein (BSP) retention was approximately eight times higher in APAP-treated animals as compared to the APAP + ascorbate ester treatments indicating maintenance of hepatic excretory functions in presence of AP or AS. Prior depletion of hepatic GSH by diethyl maleate (DEM) did not alter hepatoprotective effects of AP or AS in the presence of APAP. Hepatic ascorbate levels also peaked at 4 hours after APAP + AP or AS treatments. The possible role of L-ascorbic acid esters in GSH regeneration following co-administration of a hepatotoxic dose and APAP is discussed.  相似文献   

12.
We recently demonstrated a rapid up-regulation of serum retinol-retinol binding protein-transthyretin concentration in rats with short-term acute renal failure. We examine the effect of retinoic acid and apo-retinol binding protein (apo-RBP) on the up-regulation of serum retinol in renal failure. Injection of retinoic acid (10 micrograms) into rats with acute renal failure or sham-operated rats increased circulatory retinoic acid concentration 29-fold within 2 h but did not influence serum retinol concentration in either group. Injection of a large dose of retinoic acid (100 micrograms) decreased serum retinol concentration in rats with acute renal failure (19%) and sham-operated rats (29%). These results suggest that changes in serum retinoic acid concentration within the near-physiological range have no effect on regulation of hepatic retinol release. Injection of a large dose of retinoic acid may depress serum retinol indirectly via a retinol sparing effect in target tissues. In rats with renal failure the serum retinol concentration, elevated 44-52% above that of sham-operated controls, was also increased to 70-164% above controls by the injection of 52-63 micrograms of apo-RBP. This suggests that circulatory apo-RBP can up-regulate serum retinol. Circulatory apo-RBP may be a positive physiological feedback signal from peripheral tissues for hepatic release of retinol.  相似文献   

13.
Conjugated linoleic acid (CLA) is a polyunsaturated fatty acid obtained from ruminant products. Previous studies in rats and pigs showed that a dietary equimolar mixture of c9,t11 and t10,c12 CLA isomers induces changes in serum and tissue levels of retinoids (vitamin A derivatives). However, the mechanism(s) responsible for these actions remain(s) unexplored. Given the numerous crucial biological functions regulated by retinoids, it is key to establish whether the perturbations in retinoid metabolism induced by dietary CLA mediate some of the beneficial effects associated with intake of this fatty acid or, rather, have adverse consequences on health. To address this important biological question, we began to explore the mechanisms through which dietary CLA alters retinoid metabolism. By using enriched preparations of CLA c9,t11 or CLA t10,c12, we uncoupled the effects of these two CLA isomers on retinoid metabolism. Specifically, we show that both isomers induce hepatic retinyl ester accumulation. However, only CLA t10,c12 enhances hepatic retinol secretion, resulting in increased serum levels of retinol and its specific carrier, retinol-binding protein (RBP). Dietary CLA t10,c12 also redistributes retinoids from the hepatic stores toward the adipose tissue and possibly stimulates hepatic retinoid oxidation. Using mice lacking RBP, we also demonstrate that this key protein in retinoid metabolism mediates hepatic retinol secretion and its redistribution toward fat tissue induced by CLA t10,c12 supplementation.  相似文献   

14.
In this article, oxidative stress and enzymic-non-enzymic antioxidants status were investigated in children with acute pneumonia. Our study included 28 children with acute pneumonia and 29 control subjects. The age ranged from 2 to 11 years (4.57+/-2.13 years) and 2 to 12 years (4.89+/-2.22 years) in the study and control groups, respectively. Whole blood malondialdehyde (MDA) and reduced glutathione (GSH), serum beta-carotene, retinol, vitamin C, vitamin E, catalase (CAT), ceruloplasmin (CLP), total bilirubin, erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels were studied in all subjects. There was a statistically significant difference between the groups for all parameters except for serum CAT. Whole blood MDA, serum CLP and total bilirubin levels were higher in the study group than those of the control group. However, SOD, GPx, beta-carotene, retinol, vitamin C, vitamin E and GSH levels were lower in the study group compared with the control group. All antioxidant vitamin activities were decreased in children with acute pneumonia. Our study demonstrated that oxidative stress was increased whereas enzymic and non-enzymic antioxidant activities were significantly decreased in children with acute pneumonia.  相似文献   

15.
The protective effects of single dose of garlic oil (GO) on acute ethanol-induced fatty liver were investigated. Mice were treated with ethanol (4.8 g/kg bw) to induce acute fatty liver. The liver index, the serum and hepatic triglyceride (TG) levels and the histological changes were examined to evaluate the protective effects. Hepatic malondialdehyde (MDA), glutathione (GSH) levels and superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities were determined for the antioxidant capacity assay. Acute ethanol exposure resulted in the enlargement of the liver index and the increase of the serum and hepatic TG levels (P<0.01), which were dramatically attenuated by GO pretreatment in a dose-dependent manner (P<0.01). GO treatment (simultaneously with ethanol exposure) exhibited similar effects to those of pretreatment, while no obviously protective effects were displayed when it was used at 2h after ethanol intake. Histological changes were paralleled to these indices. Beside this, GO dramatically prolonged the drunken time and shortened the waking time, and these effects were superior to those of silymarin and tea polyphenol. In addition, GO dose-dependently suppressed the elevation of MDA levels, restored the GSH levels and enhanced the SOD, GR and GST activities. Compared with the ethanol group, the MDA levels decreased by 14.2% (P<0.05), 29.9% and 32.8% (P<0.01) in GO groups 50, 100 and 200 mg/kg, respectively. The GST activity increased by 9.97%, 19.94% (P<0.05) and 42.12% (P<0.01) of the ethanol group in GO groups 50, 100 and 200 mg/kg, respectively, while the GR activity increased by 28.57% (P<0.05), 37.97% (P<0.01), 50.45% (P<0.01) of the ethanol group in GO groups 50, 100 and 200 mg/kg, respectively. These data indicated that single dose of GO possessed ability to prevent acute ethanol-induced fatty liver, but may lose its capacity when used after ethanol exposure. The protective effects should be associated with its antioxidative activities.  相似文献   

16.
17.
The effect of dietary 0.02-10% sodium phytate on the hepatic and serum lipid status of rats fed a high-sucrose diet for 14 d was investigated. Hepatic levels of triglyceride and cholesterol and lipogenic enzymes activity were reduced with increasing dietary phytate level. The addition of 10% sodium phytate drastically depressed growth, food intake, and serum triglyceride and cholesterol levels.  相似文献   

18.
d-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of carnosine (CAR) or taurine (TAU), having antioxidant effects, on hepatic injury and oxidative stress in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days/week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days/week) or TAU (2.5 % w/w; in rat chow) for 2 months. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-0050x), and glutathione transferase (GST) activities were determined. Hepatic expressions of B cell lymphoma-2 (Bcl-2), Bax and Ki-67 were evaluated. Serum ALT, AST, hepatic MDA, and PC levels were observed to increase in GAL-treated rats. Hepatic Bax expression, but not Bcl-2, increased, Ki-67 expression decreased. GAL treatment caused decreases in GSH levels, SOD and GSH-Px activities in the liver. Hepatic mRNA expressions of SOD, but not GSH-Px, also diminished. CAR or TAU treatments caused significant decreases in serum ALT and AST activities. These treatments decreased apoptosis and increased proliferation and ameliorated histopathological findings in the livers of GAL-treated rats. Both CAR and TAU reduced MDA and PC levels and elevated GSH levels, SOD and GSH-Px (non significant in TAU?+?GAL group) activities. These treatments did not alter hepatic mRNA expressions of SOD and GSH-Px enzymes. Our results indicate that CAR and TAU restored liver prooxidant status together with histopathological amelioration in GAL-induced liver damage.  相似文献   

19.
Alterations in hepatic transsulfuration reactions were determined in rats treated with a glutathione-depleting agent. A dose of l-buthionine-(SR)-sulfoximine decreased hepatic methionine, cysteine, S-adenosylmethionine, and glutathione levels rapidly. Methionine adenosyltransferase and γ-glutamylcysteine lygase activities were decreased transiently, but significantly. The activity of cysteine dioxygenase was increased, resulting in an elevation of hypotaurine and taurine concentrations. Administration of phorone reduced hepatic glutathione and cysteine similarly, but S-adenosylmethionine concentrations were elevated for as long as 72 h. Hepatic methionine adenosyltransferase, cystathionine β-synthase, cystathionine γ-lyase, and γ-glutamylcysteine lygase activities were all increased but cysteine dioxygenase activity and taurine generation were markedly depressed. The results show that a decrease in hepatic GSH induces profound changes in sulfur amino acid metabolomics, which would subsequently influence various cellular processes. It is suggested that the change in hepatic levels of sulfur-containing substances and its physiological significance should be considered when a glutathione-depleting agent is utilized in biological experiments.  相似文献   

20.
It has been reported that infection interferes with drug metabolism, resulting in changes in pharmacokinetics. In this study, we investigated the effects of lipopolysaccharide (LPS) on hepatic total cytochrome P450 (CYP), CYP3A2, and CYP2C11 contents in a transient, LPS-induced, endotoxemia model of rats. In addition, to assess the effects on CYP3A2 activities, the pharmacokinetics of midazolam (CYP3A2 substrate) and 1-OH-midazolam (metabolite of midazolam) were investigated. Hepatic total CYP contents were significantly low until day 3 (P < 0.05) but returned to the control level on day 5. Hepatic CYP3A2 contents were significantly decreased on day 1 until day 5 (P < 0.05) but returned to the control level on day 7. Hepatic CYP2C11 contents were continuously low until day 7, and lowest on day 3. The AUC of 1-OH-midazolam was significantly decreased on day 1 after LPS administration (P < 0.01). In conclusion, LPS (5 mg/kg) challenge decreased hepatic total CYP, CYP3A2, and CYP2C11 contents and also decreased the activities of hepatic CYP3A2. It took at least 7 days for hepatic total CYP and CYP3A2 to recover to control levels, and it was suggested that the changes of hepatic total CYP contents might correlate with those of hepatic CYP3A2 contents and activities. Additionally, it is shown that their changes might reflect the recovery process from inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号