首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Steven C. Huber  Gerald E. Edwards   《BBA》1977,462(3):603-612
1. Mesophyll chloroplasts of the C4 plant Digitaria sanguinalis contain endogenous phosphoenolpyruvate which appears to distribute across the envelope according to the existing pH gradient. The phosphoenolpyruvate remaining in the stroma can be rapidly released by external inorganic phosphate or 3-phosphoglycerate while external pyruvate did not affect the distribution.

2. Phosphoenolpyruvate (PEP) was a competitive inhibitor (Ki(PEP) = 450 μM) of 32Pi uptake (Km(Pi) = 200 μM) by chloroplasts in the dark and also reduced the steady-state internal concentration of 32Pi, which is consistent with phosphate and phosphoenolpyruvate sharing a common carrier.

3. Phosphoenolpyruvate formation by chloroplasts in the light in the presence of pyruvate but in the absence of inorganic phosphate was slow and the concentration ratio of phosphoenolpyruvate (internal/external) was high. Addition of 0.1 mM phosphate induced a high rate of phosphoenolpyruvate formation and the concentration ratio (internal/external) decreased 15-fold. It is proposed that external phosphate is required both for phosphoenolpyruvate formation and efflux from the chloroplast.  相似文献   


2.
Chloroplasts from CAM-Mesembryanthemum crystallinum can transport phosphoenolpyruvate (PEP) across the envelope. The initial velocities of PEP uptake in the dark at 4°C exhibited saturation kinetics with increasing external PEP concentration. PEP uptake had a Vmax of 6.46 (±0.05) micromoles per milligram chlorophyll per hour and an apparent Kmpep of 0.148 (±0.004) millimolar. The uptake was competitively inhibited by Pi (apparent Ki = 0.19 millimolar), by glycerate 3-phosphate (apparent Ki = 0.13 millimolar), and by dihydroxyacetone phosphate, but malate and pyruvate were without effect. The chloroplasts were able to synthesize PEP when presented with pyruvate. PEP synthesis was light dependent. The prolonged synthesis and export of PEP from the chloroplasts required the presence of Pi or glycerate 3-phosphate in the external medium. It is suggested that the transport of pyruvate and PEP across the chloroplasts envelope is required during the gluconeogenic conversion of carbon from malate to storage carbohydrate in the light.  相似文献   

3.
The effects of phosphoenolpyruvate (PEP), inorganic phosphate (Pi), and ATP on 3-phosphoglycerate (PGA)-dependent O2 evolution by chloroplasts of Digitaria sanguinalis (L.) Scop. (crabgrass) were evaluated relative to possible mechanisms of PEP transport by the C4 mesophyll chloroplast. Crude and Percoll purified chloroplast preparations exhibited rates of PGA-dependent O2 evolution in the range of 90 to 135 micromoles O2 per milligram chlorophyll per hour, and up to 180 micromoles O2 per milligram chlorophyll per hour at optimal Pi concentrations (approximately 0.2 millimolar at 9 millimolar PGA). Higher concentrations of Pi were inhibitory. PEP inhibited O2 evolution (up to 70%) in both chloroplast preparations when the PEP to PGA ratio was high (i.e. 9 millimolar PEP to 0.36 millimolar PGA). Usually no inhibition was seen when the PEP to PGA ratio was less than 2. PEP acted as a competitive inhibitor and, at a concentration of 9 millimolar, increased the apparent Km (PGA) from 0.15 to 0.53 millimolar in Percoll purified chloroplasts. A low concentration of PGA and high ratio of PEP to PGA, which are considered unphysiological, were required to detect any inhibition of O2 evolution by PEP. Similar results were obtained from crude versus Percoll purified preparations. Neither the addition of Pi nor ATP could overcome PEP inhibition. As PEP inhibition was competitive with respect to PGA concentration, and as addition of ATP or Pi could not prevent PEP inhibition of PGA-dependent O2 evolution, the inhibition was not due to PEP exchange of adenylates or Pi out of the chloroplast. Analysis of the effect of Pi and PEP, separately and in combination, on PGA-dependent O2 evolution suggests interactions between PEP, Pi, and PGA on the same translocator in the C4 mesophyll chloroplast. C3 spinach chloroplasts were also found to be sensitive to PEP, but to a lesser extent than crabgrass chloroplasts. The apparent Ki values (PEP) were 3 and 21 millimolar for crabgrass and spinach, respectively.  相似文献   

4.
Summary The mechanism of activation by inorganic phosphate and ATP of cardiac muscle pyruvate kinase was studied with the aid of steady-state kinetics. The enzyme was purified to homogeneity to a final specific activity of 400 units/ mg (phosphate buffer, pH 7.6, 25 °C). At pH 7.6 the enzyme displays Michaelis-Menten kinetics with respect to both its substrates, phosphoenolpyruvate and ADP. Substrate kinetic constants are: app.Km(phosphoenolpyruvate) –0.04 mM, app.Km(ADP) =0.22 mM. Under the conditions used in the standard assay the specific activity is greatly enhanced by inorganic phosphate (50 mM) or ATP (2.5 mM). Each of these modifiers, acting separately, increases the Vmax without seriously affecting Michaelis constants and Hill coefficients. In the presence of both Pi and ATP, only a decrease in Vmax was observed.The kinetics of activation by inorganic phosphate of pyruvate kinase was examined. Studying the effect of varying concentrations of Pi on the initial rate we obtained a hyperbolic saturation curve with the app. Km(Pi) = 20 mM and Vmax = 167 units/ mg. The evidence is presented that inorganic phosphate is a substrate for a side reaction catalyzed by cardiac pyruvate kinase. It is shown that in the presence of pyruvate, inorganic phosphate and ATP in the assay system, Pi is incorporated into acid-labile products of this reaction, inorganic pyrophosphate being one of them.These findings indicate the existence of an alternative reaction catalyzed by pyruvate kinase by which energy may be stored in the form of inorganic pyrophosphate.Abbreviations PEP phosphoenolpyruvate - Pi inorganic phosphate - TEA triethanolamine - EDTA ethylenediaminetetraacetate  相似文献   

5.
A rapid counter-exchange between ATP and phosphoenolpyruvate (PEP) has been demonstrated in pea and maize mesophyll chloroplasts. Chloroplasts preloaded with either [14C] ATP or [14C] PEP readily exchange the radioactive compound with the externally added anions, ATP or PEP, whereas, cold external Pi counter-transports only with internal [14C] PEP. Flooding the system with cold Pi, however, will significantly reduce the counter-transport of external cold PEP with internal [14C] ATP. This ATP-PEP exchange is also markedly decreased by lowering the incubation temperature. The results indicate that the ATP-PEP counter-exchange could represent a key transport system in plant chloroplasts and may be particularly important in the photosynthesis of C4 plants. Furthermore, they provide information required to elucidate the mechanism of the ATP-PEP counter-transport system.  相似文献   

6.
Here, nodulated lupins (Lupinus angustifolius (cv Wonga)) were hydroponically grown at low phosphate (LP) or adequate phosphate (HP). Routes of pyruvate synthesis were assessed in phosphorus (P)-starved roots and nodules, because P-starvation can enhance metabolism of phosphoenolpyruvate (PEP) via the nonadenylate-requiring PEP carboxylase (PEPc) route. Since nodules and roots may not experience the same degree of P stress, it was postulated that decreases in metabolic inorganic phosphorus (Pi) of either organ, should favour more pyruvate being synthesized from PEPc-derived malate. Compared with HP roots, the LP roots had a 50% decline in Pi concentrations and 55% higher ADP : ATP ratios. However, LP nodules maintained constant Pi levels and unchanged ADP : ATP ratios, relative to HP nodules. The LP roots had greater PEP metabolism via PEPc and synthesized more pyruvate from PEPc-derived malate. In nodules, P supply did not influence PEPc activities or levels of malate-derived pyruvate. These results indicate that nodules were more efficient than roots in maintaining optimal metabolic Pi and adenylate levels during LP supply. This caused an increase in PEPc-derived pyruvate synthesis in LP roots, but not in LP nodules.  相似文献   

7.
磷酸丙糖转运器(tnose phosphate/phosphatetranslocator,TPT)是源、库间光合产物分配的第一调控部位,研究TPT的特性及其对同化物分配的调节,对于提高光合作用同化物利用效率有着重要意义.我们首先采用Percoll密度梯度离心从小麦(Triticum aestivum L.)叶片中分离制备了完整性达91%以上、具有较高纯度的完整叶绿体.利用TPT不可逆抑制剂[H3]2-DIDS标记和SDS-PAGE,以及小麦TPT抗体进行Western blotting分析,证明TPT蛋白仅存在于叶绿体被膜中,约占被膜总蛋白的15%,其分子量为35 kD,而在液泡膜和线粒体膜上不存在.采用硅油离心法研究TPT对磷酸二羟丙酮(dihydroxyacetone phosphate,DHAP)、磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)、葡萄糖-6-磷酸(glucose-6-phosphate,G6P)与Pi的反向运输动力学的结果表明,DHAP/Pi的最大运输活性最高,PEP/Pi次之,G6P/Pi最低.TPT与这些运输底物的Km值由小至大,分别为DHAP、Pi、PEP和G6P,证明TPT的最适运输底物为DHAP.用DIDS处理时,TPT对DHAP运输活性的抑制达95%.TPT运输活性受到抑制时,可导致叶绿体内大量积累淀粉.TPT在调控小麦叶绿体同化产物的分配中起着重要作用,在保证卡尔文循环正常运转的前提下,通过TPT外运到胞质中参与蔗糖合成和其他代谢活动的磷酸丙糖(triose phosphate,TP)约占93.6%,而用于叶绿体内合成淀粉的TP仅占6.4%.生理条件下其功能是高效率地把大部分光合同化产物TP及时运出叶绿体到胞质中,用于合成蔗糖并运输到其他库器官的需要.  相似文献   

8.
磷酸丙糖转运器(triosephosphate/phosphatetranslocator,TPT)是源、库间光合产物分配的第一调控部位,研究TPT的特性及其对同化物分配的调节,对于提高光合作用同化物利用效率有着重要意义。我们首先采用Percoll密度梯度离心从小麦(TriticumaestivumL.)叶片中分离制备了完整性达91%以上、具有较高纯度的完整叶绿体。利用TPT不可逆抑制剂[H3]2-DIDS标记和SDS-PAGE,以及小麦TPT抗体进行Westernblotting分析,证明TPT蛋白仅存在于叶绿体被膜中,约占被膜总蛋白的15%,其分子量为35kD,而在液泡膜和线粒体膜上不存在。采用硅油离心法研究TPT对磷酸二羟丙酮(dihydroxyacetonephosphate,DHAP)、磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)、葡萄糖-6-磷酸(glucose-6-phosphate,G6P)与Pi的反向运输动力学的结果表明,DHAP/Pi的最大运输活性最高,PEP/Pi次之,G6P/Pi最低。TPT与这些运输底物的Km值由小至大,分别为DHAP、Pi、PEP和G6P,证明TPT的最适运输底物为DHAP。用DIDS处理时,TPT对DHAP运输活性的抑制达95%。TPT运输活性受到抑制时,可导致叶绿体内大量积累淀粉。TPT在调控小麦叶绿体同化产物的分配中起着重要作用,在保证卡尔文循环正常运转的前提下,通过TPT外运到胞质中参与蔗糖合成和其他代谢活动的磷酸丙糖(triosep  相似文献   

9.
High-resolution 31P nuclear magnetic resonance spectroscopy and 14C fluorography have been used to identify and quantitate intermediates of the Embden-Meyerhof pathway in intact cells and cell extracts of Streptococcus lactis. Glycolysing cells contained high levels of fructose 1,6-bisphosphate (a positive effector of pyruvate kinase) but comparatively low concentrations of other glycolytic metabolites. By contrast, starved organisms contained only high levels of 3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate. The concentration of Pi (a negative effector of pyruvate kinase) in starved cells was fourfold greater than that maintained by glycolysing cells. The following result suggest that retention of the phosphoenolpyruvate pool by starved cells is a consequence of Pi-mediated inhibition of pyruvate kinase: the increase in the phosphoenolpyruvate pool (and Pi) preceded depletion of fructose 1,6-bisphosphate, and reduction in intracellular Pi (by a maltose-plus-arginine phosphate trap) caused the restoration of pyruvate kinase activity in starved cells. Time course studies showed that Pi was conserved by formation of fructose 1,6-bisphosphate during glycolysis. Conversely, during starvation high levels of Pi were generated concomitant with depletion of intracellular fructose 1,6-bisphosphate. The concentrations of Pi and fructose 1,6-bisphosphate present in starved and glycolysing cells of S. lactis varied inversely. The activity of pyruvate kinase in the growing cell may be modulated by the relative concentrations of the two antagonistic effectors.  相似文献   

10.
Phosphoenolpyruvate (PEP) was transported together with H+ inC4 mesophyll chloroplasts. Medium alkalization and stromal acidificationdue to pyruvate uptake into maize mesophyll chloroplasts inthe light were partially inhibited by adding PEP. Thus, theH+ taken up by H+/pyruvate cotransport into mesophyll chloroplastsis released together with PEP in vivo. (Received August 5, 1994; Accepted October 3, 1994)  相似文献   

11.
Amyloplasts have been isolated from tubers of potato plants (Solarium tuberosum. cv. Desirée). As it is difficult to isolate amyloplasts that have a high starch content, we used transformed plants in which the content of starch was reduced. This was achieved by decreasing the activity of ADP-glucose pyrophosphorylase by antisense techniques (Müller-Röber et al., 1992, EMBO. 11, 1229–1238). In the isolated plastids the activity of glutamine-oxoglutarate-aminotransferase (glutamate synthase, EC 2.6.1.53) was dependent upon the intactness of the plastids. For the supply of redox equivalents the addition of glucose-6-phosphate (Glc6P) was required. Glucose-1-phosphate (Glc1P) did not support glutamate synthesis. Plastids were treated with Triton X-100 and the solubilized proteins reconstituted into liposomes. Transport measurements with these liposomes revealed that inorganic phosphate (Pi), dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate and Glc6P are transported in a counter-exchange mode. Transport of phosphoenolpyruvate was low and Glc1P was virtually not transported in exchange for Pi. Kinetic constants were determined for the Pi/Pi and Glc6P/Pi counter exchanges. For comparison, proteins of mitochondria from potato tubers and pea leaves were reconstituted into liposomes. As expected, the Pi/Pi exchange across the mitochondrial membrane was not affected by DHAP and Glc6P. Kinetic constants of the Pi/Pi counter exchange were determined for potato tuber mitochondria.Abbreviations DHAP dihydroxyacetone phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP Phosphoenolpyruvate - 3-PGA 3-phosphoglycerate - Pi inorganic phosphate - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl] glycine This work was supported by Deutsche Forschungsgemeinschaft.  相似文献   

12.
Summary The enzyme-like kinetic properties of precipitated magnesium phosphate as a catalyst for formation of pyrophosphate (PPi) from phospho (enol)pyruvate (PEP) are described. This synthesis occurs at a low temperature (37°C) and represents a model that may help us understand the relevance to chemical evolution of minerals as ancient catalysts whose functions could have been taken over by contemporary enzymes. An insoluble Pi.Mg matrix was formed in a medium with 80% of the water replaced by dimethyl sulfoxide as a way of simulating conditions in a drying pond. Phospho(enol)pyruvate adsorbs onto the Pi.Mg surface according to a Langmuir isotherm, and the PEP concentration dependence of PPi formation follows a Michaelian-like function. A yield of 33% for transformation of the initially adsorbed PEP into PPi was attained after 4 days of incubation with equimolecular concentrations of Pi, MgCl2, and PEP. The magnesium concentration dependence for Pi and Mg precipitation, for adsorption of PEP onto solid Pi.Mg, and for PPi formation showed complex cooperative behavior. These results taken as a whole lead to the conclusion that the Pi.Mg surface not only provides a reactant for PPi formation but also catalyzes the reaction.Offprint requests to: A. Vieyra  相似文献   

13.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Pea chloroplasts were found to take up actively ATP and ADP and exchange the external nucleotides for internal ones. Using carrier-free [14C]ATP, the rate of nucleotide transport in chloroplasts prepared from 12-14-day-old plants was calculated to be 330 mumol ATP/g chlorophyll/min, and the transport was not affected by light or temperature between 4 and 22 degrees C. Adenine nucleotide uptake was inhibited only slightly by carboxyatractylate, whereas bongkrekic acid was nearly as effective an inhibitor of the translocator in pea chloroplasts as it was in mammalian mitochondria. There was no counter-transport of adenine nucleotides with substrates carried on the phosphate translocator including inorganic phosphate, 3-phosphoglycerate and dihydroxyacetone phosphate. However, internal or external phosphoenolpyruvate, normally considered to be transported on the phosphate carrier in chloroplasts, was able to exchange readily with adenine nucleotides. Furthermore, inorganic pyrophosphate which is not transported by the phosphate carrier initiated efflux of phosphoenolpyruvate as well as ATP from the chloroplast. These findings illustrate some interesting similarities as well as differences between the various plant phosphate and nucleotide transport systems which may relate to their role in photosynthesis.  相似文献   

15.
Role of phosphoenolpyruvate carboxylation in Acetobacter xylinum   总被引:5,自引:1,他引:4       下载免费PDF全文
Glucose-grown cells of Acetobacter xylinum oxidized acetate only when the reaction mixture was supplemented with catalytic quantities of glucose or intermediates of the citrate cycle. Extracts, prepared by sonic treatment, catalyzed the formation of oxalacetate when incubated with phosphoenolpyruvate (PEP) and bicarbonate. Oxalacetate was not formed in the presence of pyruvate plus adenosine triphosphate. The ability to promote carboxylation of PEP was lower in succinate-grown cells than in glucose-grown cells. PEP carboxylase, partially purified from extracts by ammonium sulfate fractionation, catalyzed the stoichiometric formation of oxalacetate and inorganic phosphate from PEP and bicarbonate. The enzyme was not affected by acetyl-coenzyme A or inorganic phosphate. It was inhibited by adenosine diphosphate in a manner competitive with PEP (K(1) = 1.3 mm) and by dicarboxylic acids of the citrate cycle; of these, succinate was the most potent inhibitor. It is suggested that the physiological role of PEP carboxylase in A. xylinum is to affect the net formation of C(4) acids from C(3) precursors, which are essential for the maintainance of the citrate cycle during growth on glucose. The relationship of PEP carboxylase to other enzyme systems metabolizing PEP and oxalacetate in A. xylinum is discussed.  相似文献   

16.
Maize mesophyll chloroplasts loaded with radioactively labeled 3-phosphoglycerate or phosphoenolpyruvate exchange these compounds for externally provided inorganic phosphate, 3-phosphoglycerate, phosphoenolpyruvate, and dihydroxyacetone phosphate. These exchanges are inhibited by pyridoxal phosphate. 3-Phosphoglycerate uptake, which leads to accumulation of this substance in the stroma, is competitively inhibited by inorganic phosphate and phosphoenolpyruvate. These results are consistent with the transport of 3-phosphoglycerate, phosphoenolpyruvate, inorganic phosphate, and dihydroxyacetone phosphate being mediated by a common carrier (the phosphate translocator). The activation energy of 3-phosphoglycerate uptake as determined from its temperature dependence is 19.5 kcal (4–15 °C). In isolated chloroplasts malate and phosphoenolpyruvate production from oxalacetate and pyruvate, respectively, is inhibited by 3-phosphoglycerate, the extent of inhibition being dependent on the relative concentrations of inorganic phosphate and 3-phosphoglycerate. We propose that 3-phosphoglycerate from bundle-sheath cells may serve as a feedback regulator of mesophyll cell photosynthesis.  相似文献   

17.
Phosphoenolpyruvate carboxylase from leaves of the C4 plant Setaria verticillata (L.) Beauv. is activated by light; day levels of activity are reached after 30 minutes of illumination. Photoactivation is prevented by inhibitors of photosynthetic electron flow or of photophosphorylation and by D,L-glyceraldehyde, which inhibits the reductive pentose phosphate pathway.Although the extractable activity in the dark is not affected by temperature the photoactivation is prevented when both illumination and extraction are done under low temperature (5 C). High temperature (30 C) during either illumination or extraction is needed for activation. Once the enzyme is photoactivated at 30 C, a transfer of the leaves to 5 C does not abolish the extra activity.The results suggest that both unimpaired electron flow and photophosphorylation are prerequisites for the activation of phosphoenolpyruvate carboxylase. Low temperature apparently suppresses either the transport to the cytoplasm of a photosynthetic intermediate or the activating reaction itself. The inclusion of phosphoenolpyruvate in the extraction medium increases the night activity.On the basis of the available information, it is suggested that phosphoenolpyruvate could be the activator in vivo. In that case, the activation of phosphoenolpyruvate carboxylase would depend on internal CO2 level and prior photoactivation of both pyruvate, orthophosphate, dikinase and NADP malate dehydrogenase.Abbreviations PEPCase phosphoenolpyruvate carboxylase - PEP phosphoenolpyruvate - PAR photosynthetically active radiation - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DSPD disalicylidenpropanediamine - MV methylviologen - ME malic enzyme - MDH malate dehydrogenase - PPDK pyruvate, Pi dikinase - CAM Crassulacean Acid Metabolism  相似文献   

18.
Culture of bean plants (Phaseolus vulgaris L. cv., Złota Saxa) for 16 d on phosphate-deficient nutrient medium resulted in an over twofold increase of pyruvate concentration in the root tissues. In a variety of plant tissues, the marked decline in cellular concentrations of adenylates and inorganic phosphate (Pi) influences the activity of pyruvate producing enzymes, which are dependent on the availability of ADP. In bean roots after 16 d of phosphate starvation pyruvate producing enzymes: phosphoenolpyruvate phosphatase (EC 3.1.3.2) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) had higher activities compared to those of control plants. The observed decrease of alanine and ethanol concentration and also alcohol dehydrogenase (EC 1.1.1.1) activity in phosphate-deficient roots may be the effect of the restrictions in pyruvate utilizing pathways. The increased activity of mitochondrial NAD-malic enzyme (EC 1.1.1.40) as well as the lower consumption of pyruvate during respiration of phosphate-deficient roots indicate that pyruvate concentration in mitochondria may be elevated. It is proposed that pyruvate accumulation in phosphate-deficient roots and alternative oxidase participation in respiration are important aspects of plant metabolic adaptations to Pi limitation, and may play a role in reducing oxidative stress induced by phosphate deficiency.  相似文献   

19.
Kuczek M 《Bio Systems》1999,54(1-2):71-76
This paper presents a simple solution to the problem of approximating the calculated curve of reaction progress to the measured curve which is usually disturbed by initial oscillation of auxiliary lactate dehydrogenase (LDH) reaction. The experiments leading to the determination of the apparent Km for phosphoenolpyruvate (PEP) and Vm were performed. For precise estimation of kinetic parameters (Km and Vm) of the M1 isozyme of pyruvate kinase (PK), measured by coupling it to LDH reaction, the sequence of Michaelis-Menten for pyruvate kinase and second-order kinetics for lactate dehydrogenase reaction as well as a non-zero initial concentration of lactate was assumed. The functions of apparent Km and Vm of pyruvate kinase with respect to phosphate concentration, computed by an analysis of the total reaction progress curves, indicate that the reaction mixture contains an uncompetitive inhibitor of pyruvate kinase, and that the phosphate binds this inhibitor. The proposed simple mathematical model of pyruvate kinase Km and Vm increase by inorganic phosphate assumes that the pyridine nucleotides (NAD-derivatives) are kinase inhibitors. An approximate dissociation constant for pyridine nucleotides-phosphate complex and true Km of pyruvate kinase for PEP were estimated. The proposed model fits exactly the entire measured reaction process.  相似文献   

20.
J W Janc  W W Cleland  M H O'Leary 《Biochemistry》1992,31(28):6441-6446
Formate is an alternate substrate for bicarbonate in the reaction with PEP catalyzed by phosphoenolpyruvate carboxylase from Zea mays, producing formyl phosphate and pyruvate. The Km for formate is 25 +/- 2 mM, and the maximum velocity is 1% of that for bicarbonate at pH 8.0. Use of [18O]formate produces inorganic phosphate containing 1 equiv of 18O, but no label is incorporated into residual phosphoenolpyruvate. PEP carboxylase catalyzes the hydrolysis of phosphoglycolate or L-phospholactate 2000 times more slowly and D-phospholactate 4000 times more slowly than the reaction between bicarbonate and PEP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号