首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
There is a need for methods of rapid and sensitive sperm function assessment. As spermatozoa are not able to fertilize an oocyte before having undergone a series of complex physiological changes collectively called capacitation, it is logical to assess sperm function under fertilizing conditions in vitro. In this study, the responsiveness of sperm to capacitating conditions in vitro was monitored by changes in sperm response to ionophore and by changes in the amount of intracellular calcium ions in stored boar semen. Boar semen was diluted at 32 and 20 degrees C and stored for 24 and 72 h at 16 and 10 degrees C. Ionophore-induced changes and increased intracellular calcium ion content in boar spermatozoa were recorded by flow cytometry and found to progress as a function of time during incubation under capacitating conditions. All responsiveness parameters (increases in proportions of membrane-defective spermatozoa, acrosome-reacted spermatozoa, and cells with high intracellular calcium levels) were shown to be sensitive to subtle physiological changes occurring at low storage temperatures. The initial levels of sperm with a high calcium content were higher in semen stored at 10 degrees C, but the accumulation of internal calcium was lower than in semen stored at 16 degrees C. The loss of membrane integrity and increase in the proportion of acrosome-reacted cells were higher in semen stored at 10 degrees C. Dilution at 20 degrees C had no negative effect on membrane integrity or responsiveness to capacitating conditions. There was no significant difference between semen stored for 24 and 72 h in terms of membrane integrity, acrosome reaction, and intracellular calcium after capacitation treatment. However, dynamics of cell death and acrosome reaction in response to capacitating conditions were somewhat accelerated after 72 h storage, especially in semen stored at 10 degrees C. It can be concluded that the simultaneous use of the sperm membrane responsiveness and kinetic parameters is a sensitive tool for the detection of storage-related membrane changes in boar semen.  相似文献   

2.
Human spermatozoa were cooled from 37 to 0 degrees C at 10 degrees C min(-1) in 5 degrees C steps with 1 min equilibration at each step, the temperature control was +/- 0.1 degrees C. Spermatozoa were held at 0 degrees C for 5 min and then rewarmed at the same rate. No significant effect of cooling on the straight-line velocity was found using computer-aided semen analysis. The physiological function of spermatozoa was also examined before and after cooling using hypoosmotic swelling, ionophore-provoked acrosome reaction, and binding to fragments of human zonae pellucidae. Spermatozoa were cooled either in seminal plasma or in conventional IVF medium with or without fractionation by centrifugation through a discontinuous Percoll gradient. When spermatozoa were cooled and rewarmed in seminal plasma there was no significant change in either the ionophore-induced acrosome reaction or the binding to zona pellucida fragments. When spermatozoa were fractionated by centrifugation through Percoll an increased response in both was seen. However, following cooling and rewarming, a significant decline in the response of both occurred. We suggest that motility alone is not a reliable predictor of changes in other physiological functions of spermatozoa following cooling. Furthermore, short-term cooling appears to have no significant detrimental effect on normozoospermic samples and cold shock may be avoided in the clinical context by controlled cooling and warming.  相似文献   

3.
The effects of rapid cooling of semen (cold shock) from 30 degrees C to various temperatures above 0 degrees C on survival of ram spermatozoa suspended in diluents with or without egg yolk were assessed before and after freezing. Rapid cooling of extended semen from 30 to 15 degrees C had little or no effect on spermatozoa survival before or after freezing. Rapid cooling of extended semen from 30 degrees C to 10, 5, or 0 degrees C was accompanied by a progressive decrease in percentage of motile spermatozoa and percentage of intact acrosomes before freezing and a decrease in percentage of motile spermatozoa and after freezing. The ability of spermatozoa motile after cold shock to survive freezing and thawing, evaluated as cryosurvival, was not significantly (P greater than 0.05) affected by the temperature to which semen was cooled. The addition of egg yolk to the initial extender had a beneficial effect on percentage of motile spermatozoa particularly after rapid cooling of semen to 10 and 5 degrees C. Although egg yolk had little effect before freezing on semen rapidly cooled to temperatures above 15 degrees C and therefore not actually cold shocked, it substantially improved the subsequent survival of spermatozoa after freezing and thawing. Percentage of motile spermatozoa after cooling and after freezing was generally higher when the semen was collected during a decreasing photoperiod than during an increasing photoperiod.  相似文献   

4.
Experiments were conducted to determine temperatures between 24 and 4 degrees C at which stallion spermatozoa are most susceptible to cold shock damage. Semen was diluted to 25 x 10(6) spermatozoa/ml in a milk-based extender. Aliquots of extended semen were then cooled in programmable semen coolers. Semen was evaluated by computerized semen analysis initially and after 6, 12, 24, 36 and 48 hours of cooling. In Experiment 1A, semen was cooled rapidly (-0.7 degrees C/minute) from 24 degrees C to either 22, 20, 18 or 16 degrees C; then it was cooled slowly (-0.05 degrees C/minute) to a storage temperature of 4 degrees C. In Experiment 1B, rapid cooling proceeded from 24 degrees C to either 22, 19, 16, or 13 degrees C, and then slow cooling occurred to 4 degrees C. Initiating slow cooling at 22 or 20 degrees C resulted in higher (P<0.05) total and progressive motility over the first 24 hours of cooling than initiating slow cooling at 16 degrees C. Initiation of slow cooling at 22 or 19 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of cooled storage than initiation of slow cooling at 16 or 13 degrees C. In Experiment 2A, semen was cooled rapidly from 24 to 19 degrees C, and then cooled slowly to either 13, 10, 7 or 4 degrees C, at which point rapid cooling was resumed to 4 degrees C. Resuming the fast rate of cooling at 7 degrees C resulted in higher (P<0.05) total and progressive motility at 36 and 48 hours of cooled storage than resuming fast cooling at 10 or 13 degrees C. In Experiment 2B, slow cooling proceeded to either 10, 8, 6 or 4 degrees C before fast cooling resumed to 4 degrees C. There was no significant difference (P>0.05) at most storage times in total or progressive motility for spermatozoa when fast cooling was resumed at 8, 6 or 4 degrees C. In Experiment 3, cooling units were programmed to cool rapidly from 24 to 19 degrees C, then cool slowly from 19 to 8 degrees C, and then resume rapid cooling to storage temperatures of either 6, 4, 2 or 0 degrees C. Storage at 6 or 4 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of storage than 0 or 2 degrees C.  相似文献   

5.
Cooling to 2 degrees C during 15 minutes rat auricles immersed into a calcium free Krebs-Ringer solution induced extrusion of intracellular calcium. the quantity of extruded calcium is able to restore the rythmic contractility of new auricles immersed in this medium when rewarmed to 37 degrees C. Apparently this calcium is not involved in the mechanism of muscular contraction and this liberation does not seem to be related to an inhibition of Na-K . ATPase coupled to the Na/Ca exchange.  相似文献   

6.
A suitable method for the cryopreservation of donkey semen would be very valuable for the ex situ management of genetic diversity in this species. This report uses a variety of observation and trials to evaluate the effect of cryoprotectants in per-cycle pregnancy rates (PC) in equids females (jennies (donkey) and mares (horse)). This was explored by (1) comparing the results of insemination of jennies and mares with cooled or frozen donkey semen, (2) examining the possible toxic effect of the cryoprotectant (CPA) glycerol in these two species and (3) studying alternative solutions. Donkey and horse semen was either used immediately, or cooled according to some steps of the pre-freezing procedure or frozen and thawed. The pre-freezing procedure included semen dilution, centrifugation, resuspension in milk or in INRA82+2% egg yolk+various % CPA (expressed as final concentrations in extended semen (v/v)) and then cooling to 4 degrees C. PC was similar in mares and jennies inseminated with donkey semen cooled to 4 degrees C in milk. However, the PC was significantly higher in mares than in jennies when donkey semen was frozen with 2.2% glycerol (36%, n=50 cycles vs. 11%, n=38 cycles; P<0.01). Increasing the concentrations of glycerol (0, 2.2, 3.5, 4.8%) before cooling stallion semen resulted in a progressive decrease in mare PC (87, 53, 53, 13% (n=15 cycles for each concentration); P<0.0001). The addition of 2.2% glycerol before cooling donkey semen decreased the PC measured in jennies to 0. The replacement of glycerol by 2% dimethylformamide increased the fertility obtained in jennies with cooled donkey semen (PC: 67%, n=12 cycles) but did not increase the fertility obtained with frozen-thawed donkey semen (PC: 11%, n=28 cycles with dimethylformamide vs. 0%, n=16 cycles with glycerol). In conclusion, this study clearly shows that the ability of jennies to conceive after AI with donkey frozen semen is lower than that of mares. Glycerol affects the fertility of donkey and stallion spermatozoa as early as during the pre-freezing procedure. In consequence, the glycerol level must be low in frozen equine semen to provide good fertility. The toxic dose of glycerol for donkey spermatozoa seems to be almost half that for stallion spermatozoa. Whether this greater sensitivity of donkey spermatozoa to glycerol is responsible for the low success of semen cryopreservation in jennies is not so obvious because replacement of glycerol by dimethylformamide was not much more effective in terms of fertility.  相似文献   

7.
This study was conducted to compare the cooling rates and storage temperatures within equine semen transport containers exposed to different ambient temperatures, and to evaluate the ability of these containers to preserve spermatozoal motility following 24 h of storage under these conditions. In Experiment 1, nonfat dried milk solids, glucose, sucrose, equine semen extender was divided into seven 40-mL aliquots and loaded into seven different semen transport containers: Equitainer I, Equitainer II, Equitainer III, ExpectaFoal, Bio-Flite, Lane STS, and Equine Express. After containers were loaded, they were subjected to one of three ambient storage temperatures: 1) 22 degrees C for 72 h, 2) -20 degrees C for 6 h followed by 22 degrees C for 66 h, or 3) 37 degrees C for 72 h. Cooling rates and storage temperatures of semen extender in each container were monitored with thermocouples and a chart recorder. In Experiment 2, semen from each of three stallions (3 ejaculates per stallion) was diluted to 25 x 10(6) spermatozoa/mL with semen extender, divided into 40 mL aliquots and loaded into transport containers as in Experiment I. Containers were subjected to one of three ambient storage conditions: 1) 22 degrees C for 24 h, 2) -20 degrees C for 6 h, followed by 22 degrees C for 18 h, or 3) 37 degrees C for 24 h. After 24 h of storage, spermatozoal motion characteristics (percentage of motile spermatozoa; MOT, percentage of progressively motile spermatozoa; PMOT, and mean curvilinear velocity; VCL) were evaluated using a computerized spermatozoal motion analyzer. Significant interactions were detected among storage conditions and semen transport containers for the majority of the temperature endpoints measured. When exposed to temporary ambient freezing conditions, the lowest temperatures attained by samples in containers ranged from -2.8 to 0.8 degrees C. Lowest temperature samples attained was not correlated (P > 0.05) with spermatozoal motility under any ambient condition. However, time below 4 degrees C was highly correlated (P < 0.05) with a reduction in spermatozoal motility. Mean cooling rates from 20 degrees C to 8 degrees C did not correlate with spermatozoal motility, except when containers were exposed to temporary freezing conditions. No container cooled samples below 6 degrees C in 22 degrees C or 37 degrees C environments except for the ExpectaFoal, in which samples fell below 4 degrees C under all ambient conditions. Ambient temperature affected MOT, PMOT and VCL of semen stored in all containers (P < 0.05) except for the Equitainer II in which motion characteristics remained high and were similar among all ambient temperatures (P > 0.05). Results suggest that stallion semen may be able to tolerate a wider range of cooling rates and storage temperatures than previously considered safe.  相似文献   

8.
Preserved stallion semen often has decreased spermatozoal motility and fertility that can vary significantly between individual stallions. It is not known whether the medium used for extending equine sperm contributes to these decreases by inducing premature capacitation during storage. If spermatozoa undergo capacitation or acrosome reaction prior to insemination, this could result in a diminished capacity to penetrate the cumulus mass and fertilize the egg. We hypothesized that skim milk-based semen extenders, similar to those used in cooled storage, stabilize sperm membranes and prolong sperm motility and longevity. However, this could decrease the efficiency of sperm to undergo subsequent capacitation in vivo. This study was designed to evaluate the effects from two media on sperm function. Spermatozoal motility was analyzed, intracellular calcium was measured, and the ability of sperm to undergo acrosome reaction was compared after incubation in a skim milk extender (SME) and Tyrode's medium containing albumin, lactate, and pyruvate (TALP) at 37 degrees C. Results suggest that the SME facilitated capacitation as detected by an increase in both intracellular calcium and acrosome reactions, and a decrease in motility, as compared to TALP. Our data support a shortened functional lifespan for equine sperm in skim milk extender, which indicates that further refinements in cooled semen preservation are required to improve fertility of transported equine semen.  相似文献   

9.
Protocols for the successful manipulation and preservation of semen in a given species depend upon a fundamental knowledge of how spermatozoa respond to the physicochemical conditions of the extension media; methods developed for the preservation of eutherian spermatozoa may not necessarily be suitable for marsupial semen. The aim of this study was to investigate the effects on koala sperm motility of serial dilution, changes in temperature, diluent pH and osmolality to establish the optimal physicochemical conditions for short-term semen storage. This study showed that electroejaculated koala semen diluted 1∶1 (v/v) with PBS frequently coagulated after incubation at 35 degrees C, but that further dilution and incubation resulted in a corresponding increase in the percentage of spermatozoa swimming in a non-linear trajectory. The effect of rapid temperature change on the motility of koala spermatozoa was investigated by exposing semen, initially diluted at 35 degrees C, to temperatures of 45, 25, 15 and 5 degrees C. Although sperm motility was reduced after incubation at 45 degrees C, a rapid decrease in temperature of up to 20 degrees C did not result in a significant reduction in sperm motility. However, contrary to evidence in other marsupials, there was a small but significant decrease in sperm motility after rapid cooling of diluted semen from 35 to 5 degrees C. The effects of diluent pH and osmolality on the motility of koala spermatozoa were investigated. These experiments indicated that diluents for koala sperm manipulation should buffer in a pH range of 7-8 and have an osmolality of approximately 300 mmol kg(-1). The final experiment compared the relative effectiveness of Tris-citrate buffer (1% glucose) and PBS to maintain koala sperm motility over a range of incubation temperatures (5-35 degrees C) for up to 8 days. Reduction in sperm motility was directly related to temperature, and motility was sustained for the longest duration when stored at 5 degrees C. The Tris-citrate buffer solution was superior to PBS as a preservation diluent at all temperatures, and koala spermatozoa remained motile even after 42 days storage at 5 degrees C. Spermatozoa diluted in PBS (with Ca(2+) or Mg(2+)) and cooled to 5 degrees C showed evidence of an unusual motility pattern, similar to that of hyperactivated eutherian spermatozoa. This study showed that koala spermatozoa respond to different physicochemical conditions associated with short-term liquid storage in essentially the same way as the spermatozoa of eutherian mammals, although koala spermatozoa appear to be more tolerant of rapid temperature shock. The results of this study can be used to make informed selections with regard to appropriate diluent composition and improved short-term sperm preservation protocols and represent the first such database for any species of marsupial.  相似文献   

10.
The aim of this research was to optimise protocols for freezing spermatozoa of the Pacific oyster. All the phases of the cryopreservation procedure (choice of cryoprotectant, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa to restore on thawing the morphological and physiological characteristics of fresh semen. The choice of type and concentration of cryoprotectant in which semen is incubated before freezing is fundamental for a successful cryopreservation: the cryoprotectants (dimethylsulfoxide--Me(2)SO, ethylene glycol--EG, propylene glycol-PG, and glycerol in concentrations between 5 and 15%) were tested for their toxicity on the semen exposed up to 30 min at +26 degrees C (room temperature) by evaluating its ability to fertilise and the embryo development to the regular D larval stage. The best cryoprotectants, Me(2)SO, EG, and PG 5, 10, and 15% respectively, were used for the pre-cooling (adaptation/cooling) tests. Two different adaptation/cooling procedures were tested: (A) from +26 degrees C to 0-2 degrees C (2.6 degrees C/min) and (B) at +26 degrees C for 15 min. Lastly, using the cryoprotectants and the adaptation procedure (B) that had given the best results in the preceding stages of the experiment, four cooling rates were tested: 6, 11, 16, and 21 degrees C/min. It was seen that the semen that was incubated with EG 10%, adapted at +26 degrees C for 15 min, and then cooled at a rate of 6 degrees C/min showed a percentage of regular D larvae on thawing comparable to that of fresh semen (p > 0.05).  相似文献   

11.
The objective of the present study was to evaluate the effect of sperm dilution (one part semen:one part extender or at 200 x 10(6) spermatozoa/mL) using a coconut water extender on the post-thaw sperm quality. Twelve ejaculates were collected from six dogs. Semen was divided into two aliquots, one for dilution one part semen:one part extender (group 1) and another for a concentration of 200 x 10(6) spermatozoa/mL (group 2). Semen was initially extended at 37 degrees C at a proportion of one part semen:half part extender (1:1/2) for group 1 (A-fraction). For group 2, the volume for a concentration of 200 x 10(6) spermatozoa/mL was calculated and a half of this volume was used for the initial dilution (A-fraction, 37 degrees C). Coconut water extender containing 20% egg yolk was used for this initial dilution in both groups. After dilution, the semen was cooled for 40 min in a thermal box (15 degrees C) and for 30 min in a refrigerator. The other half of the extender (B-fraction) containing egg yolk and glycerol (12%) was added to semen in both groups. Subsequently, the final concentration of glycerol in the extender was 6%. Ejaculates were frozen in 0.25 mL straws 5 cm above the surface of liquid nitrogen and stored at -196 degrees C. After 1 week, straws were thawed at 37 degrees C for 1 min and the microscopic criteria were evaluated. The dilution method had no influence on sperm motility, vigor and normal spermatozoa (71.4 compared with 67.7%). There was no effect of dog, ejaculate within male on post-thaw semen quality. Moreover, there was not a male x treatment interaction. Both treatments were efficient in preserving sperm quality.  相似文献   

12.
Adult Merino ewes (n=448) were apportioned into two groups and inseminated with: extended at 30 degrees C with skim milk and stored for 6h at 15 degrees C (cooled semen) or extended with skim milk-citrate trisodium with egg yolk and stored for 24h at 5 degrees C (chilled semen). Each group was further subdivided according to the time of cervical insemination at 42, 46 and 50h after pessary (MAP-60 mg) removal and according to the dilution of the semen (120 x 10(6) spermatozoa in 0.05, 0.1 and 0.2 ml). The pregnancy rate after insemination with cooled semen was 50% better than that after chilled semen (56.7 vs. 37.5%; P<0.001). Pregnancy rate was not affected by the volume of insemination; however, there was a tendency of increased lambing rate with an insemination dose of 0.1 cc (1:2, dilution), especially when the ewes were inseminated with cooled semen. The effect of time on insemination was significant only in ewes inseminated with chilled semen at 5 degrees C (P<0.01). Insemination carried out 46 h after pessary removal resulted in higher pregnancy and lambing rate (36.5, 31.1; 52.0, 45.3; and 24.0, 20.0 at 42, 46 and 50h, respectively). Pregnancy of ewes inseminated with chilled semen at 46 h after pessary removal was similar to that obtained using cooled semen (52.0 vs. 56.7%). From this study, it is concluded that advancing the time of insemination with chilled semen at 5 degrees C improves pregnancy and that the lambing obtained under these conditions is similar to the one obtained with cooled semen.  相似文献   

13.
Ram semen, collected by artificial vagina, was diluted and processed for long-term storage as described by P. S. Fiser, L. Ainsworth, and R. W. Fairfull (Canad. J. Anim. Sci. 62, 425-428, 1982). The concentration of the cryoprotectant, glycerol, was adjusted to 4% in the diluted semen prior to freezing by a one-step addition at 30 degrees C (Method 1), by cooling the semen to 5 degrees C and addition of the glycerol gradually over 30 min (Method 2), by one-step addition of glycerol prior to equilibration for 2 hr (Method 3), or by cooling to 5 degrees C, followed by a holding period of 2 hr at 5 degrees C, and the one-step addition of glycerol just prior to freezing (Method 4). After thawing, the glycerol concentration of the semen was reduced by stepwise dilution from 4 to 0.4% over 15 or 30 min or by a one-step ten-fold dilution. The average post-thaw percentage of motile spermatozoa was significantly lower after addition of glycerol by Method 1 (39.9%) than when the glycerol was added by the other three methods (range, 44.0-46.4% averaged over the glycerol dilution). The average post-thaw percentage of intact acrosomes (61.2%), highest in semen in which the glycerol was added by Method 2, was not significantly different from those in which glycerol was added to semen by Methods 3 and 4, but it was significantly higher than that found in semen in which the glycerol was added by Method 1 (54.4%). However, when averaged over the method of glycerolation, the post-thaw percentage of motile spermatozoa (range, 43.7-44.2%) and the percentage of intact acrosomes (range, 56.8-59.5%) did not differ significantly in semen subjected to gradual decrease in glycerol concentration and diluent osmolality (over 15 and 30 min) or by a one-step, 10-fold dilution. These data indicate that post-thaw survival of spermatozoa can be influenced by the way in which glycerol is added prior to freezing. However, post-thaw spermatozoa motility and acrosomal integrity can be maintained even after a rapid decrease in glycerol concentration such as that which accompanies insemination or dilution of semen for assessment of motility.  相似文献   

14.
The influence oftemperature, addition of glycerol, initial freezing temperature, method of dilution, level of glycerol in the diluted semen, equilibration time and type of diluent on the survival and fertilizing capacity of deep-frozen according to the best conditions was compared with that of "fresh" semen. The addition of glycerol at plus30 degrees C resulted in a highly significant decrease in the mean proportion of motile spermatozoa immediately after thawing compared with the effect of addition at plus 4 degrees C. The immersion of the straws at minus55 degrees C significantly reduced the revival of the spermatozoa compared with initial freezing at lower temperatures. The exposure time to glycerol had no significant effect on the survival of spermatozoa after thawing and incubation, but fertility was significantly higher with 4% than with 2% glycerol. The I. N. R. A. diluent provided better sperm survival and a significantly higher conception rate than did lactose-egg yolk extender. The semen frozen according to the best conditions (about 50% of the samples) had a fertilizing ability similar to that of "fresh" semen when the proportion of motile spermatozoa before, and after 1 or 3 hr of incubation was equal to or above 45, 40 and 30% respectively.  相似文献   

15.
The sperm-rich fraction of stallion semen was collected in an AV and, after dilution in an extender, was cooled to 2--5 degrees C before placing in aluminium tubes for freezing in liquid nitrogen for several hours or months. The spermatozoa in about 200 ejaculates from 36 stallions were examined to compare their survival time, motility and velocity before and after thawing. According to the various indices used, 20% of stallions produced spermatozoa which were unaffected, 60% partly but not seriously affected and the remainder completely inactivated. The velocity of spermatozoa decreased from 51.4 micrometers/sec in the fresh semen to 36.8 micrometers/sec in the thawed semen. The fertilizing capacity of the spermatozoa of frozen--thawed semen of 5 stallions was examined in 14 mares. In all, 65 inseminations were made and the blastocysts were recovered non-surgically from the uterus 7--9 days after ovulation. A 20% drop in blastocyst recovery occurred as the result of freezing and thawing, when the same mares were used for insemination of raw and frozen--thawed semen. The capacity to freeze sucessfully proved to be a specific characteristic of certain stallions. Degenerate blastocysts were not recovered but those resulting from artificial insemination of frozen semen were much smaller in diameter than those following insemination of raw semen.  相似文献   

16.
The principal objective of this study was to derive an improved procedure for cryopreservation of swamp buffalo (Bubalus bubalis) spermatozoa. Experiments were conducted to determine effects of cooling rate, intermediate plunge temperature and warming rate on motility and acrosome integrity of spermatozoa. Spermatozoa were obtained from three bulls (three ejaculates/bull) and were subjected to nine cooling conditions before being frozen in liquid nitrogen: cooling at 10, 20, or 30 degrees C/min each to -40, -80, or -120 degrees C before being plunged into liquid nitrogen. The spermatozoa frozen under a given condition were then thawed either at 1000 or 200 degrees C/min. Cooling rate, intermediate temperature and warming rate significantly affected survival of spermatozoa obtained from the three bulls. Cooling spermatozoa from 4 to -120 degrees C either at 20 or 30 degrees C/min yielded better progressive motility compared to other cooling conditions (50 versus 30%). Rapid warming was superior to slow warming. In an additional study, motility and fertility of spermatozoa frozen after being cooled to -120 degrees C at 20 degrees C and 30 degrees C/min and those frozen by a standard protocol used routinely for semen processing were assessed. Progressive motility of cryopreserved spermatozoa cooled at 20 degrees C and 30 degrees C/min was 40%, while that of spermatozoa cryopreserved using a standard protocol was 25%. A total of 178 buffalo cows were inseminated with cryopreserved spermatozoa obtained from one bull, and their pregnancy status was assessed 60 days later by rectal palpation. Out of the 60, 26 (43%) and 23 of 58 (40%) cows inseminated with sperm cooled at 20 and 30 degrees C/min, respectively, became pregnant, whereas 17 of 60 (28%) cows inseminated with sperm frozen by a standard protocol became pregnant. This study demonstrates that an effective cryopreservation procedure for buffalo spermatozoa can be derived by systematic examination of various cryobiological factors.  相似文献   

17.
The fertility of liquid-preserved boar semen declines during storage at 17°C, insemination trials even indicating early losses in fertilizing ability within the first 24-48 h of storage. Standard semen parameters barely reflect these changes in semen quality, and new approaches for assessment of functional changes in stored spermatozoa are needed. Capacitation, the essential prefertilization step for spermatozoa in the female genital tract, is specifically induced in vitro by bicarbonate. Therefore, we have investigated changes in responsiveness of boar spermatozoa to bicarbonate during storage. Ejaculates of 14 boars were diluted in Beltsville thawing solution, cooled to 17°C and stored for 12, 24, 72, 120, and 168 h before investigation. At each time, basic semen quality was characterized by sperm motility and viability. Subsequently, washed subsamples were incubated in variants of an in vitro fertilization (IVF) medium and assessed for kinetic changes of viability (plasma membrane integrity) and intracellular calcium concentration using flow cytometry in combination with propidium iodide and Fluo-3. By this means, it was possible to determine specific effects of bicarbonate and calcium on sperm subpopulations over incubation time. During storage, standard semen parameters remained on a high level. However, flow cytometric analysis of sperm responses to capacitating and control media revealed two opposing effects of storage. There was a loss of response to bicarbonate in part of the live sperm population but an increasing degree of instability in the rest. Assessment of response to capacitating media by flow cytometry appears a markedly more sensitive way of monitoring sperm functionality during storage than the standard semen parameters of motility and viability.  相似文献   

18.
Understanding cryoinjury of dog spermatozoa is crucial to preserving fertilizing ability. This study examined flow cytometric indicators of sperm function to explore the reported benefits of Equex STM paste. The motility of cryopreserved spermatozoa immediately and 1h after thawing was higher in the extender containing 0.5% Equex; no significant differences between the two extenders were observed regarding viability, acrosomal integrity and intracellular Ca(2+) concentration. The proportion of spermatozoa having high membrane fluidity increased significantly post-thawing. The interaction between time after thawing and treatment was significant for plasma membrane fluidity. Dilution in a commercial diluent for transport before processing caused a significant increase in intracellular Ca(2+), which may affect functional survival. No significant difference with or without Equex was detected in plasma membrane fluidity. However, a significant interaction between Equex and dogs was detected. A significant decrease in intracellular Ca(2+) was detected in the live cell population both after dilution in Andersen's buffer and again after cooling and equilibration. One hour post-thaw, the proportion of live spermatozoa with high calcium concentration increased to a similar proportion as that seen in diluted semen; the interaction between diluent and dog was significant. The results suggest that Equex in the diluent benefited motility after cryopreservation. Live spermatozoa with high intracellular Ca(2+) after cryopreservation seem to have a favoured survival in the first hour after thawing. Nevertheless, survival after cryopreservation was severely compromised, explaining the relatively poor fertility of cryopreserved dog semen.  相似文献   

19.
The objectives were to compare embryo development rates after oocyte transfer with: (1) intrauterine or intraoviductal inseminations of fresh semen versus intraoviductal insemination of frozen semen; (2) intraoviductal versus intrauterine inseminations of cooled semen. In Experiment I, oocytes were transferred into the oviduct, and recipients were inseminated into the uterus with 1 x 10(9) fresh spermatozoa, or into the oviduct with 2 x 10(5) fresh or frozen-thawed spermatozoa. In Experiment II, semen was cooled to 5 degrees C before intrauterine insemination with 2 x 10(9) spermatozoa or intraoviductal inseminations of 2 x 10(5) spermatozoa (deposited with the oocytes). In Experiment I, embryo development rates were similar (P>0.05) for intrauterine versus intraoviductal inseminations when fresh semen was used (8/14, 57% and 9/11, 82%, respectively). However, embryo development rates were lower (P<0.05) when frozen spermatozoa were placed within the oviduct (1/12, 8%). In Experiment II, embryo development rates were higher (P<0.05) when cooled semen was used for intrauterine (19/23, 83%) versus intraoviductal (4/16, 25%) inseminations. We concluded that intraoviductal insemination can be successfully performed using fresh spermatozoa. However, the use of cooled and frozen spermatozoa for intraoviductal inseminations was less successful, and needs further investigation.  相似文献   

20.
Three experiments were conducted to evaluate the effects of egg yolk and(or) glycerol added to a nonfat dried skim milk-glucose (NDSMG) extender on motion characteristics and fertility of stallion spermatozoa. In Experiment 1, ejaculates from each of 8 stallions were exposed to each of 4 extender treatments: 1) NDSMG, 2) NDSMG + 4% egg yolk (EY), 3) NDSMG + 4% glycerol (GL), and 4) NDSMG + 4% egg yolk + 4% glycerol (EY + GL). Samples were cooled at -0.7 degrees C/min from 37 to 20 degrees C; subsamples were then cooled at -0.05 or -0.5 degrees C/min from 20 to 5 degrees C. Percentages of motile spermatozoa (MOT) and progressively motile spermatozoa (PMOT) were determined at 6, 24 and 48 h after initiation of cooling. There was no overall effect (P > 0.05) of cooling rate. PMOT was highest (P < 0.05) for spermatozoa extended in NDSMG + GL at 48 h. At 24 and 48 h, MOT and PMOT were lowest (P < 0.05) for spermatozoa extended in NDSMG + EY. In Experiment 2, ejaculates from 8 stallions were exposed to each of 4 treatments: 1) NDSMG, 2) NDSMG + EY, 3) semen centrifuged in NDSMG and resuspended in NDSMG, and 4) semen centrifuged in NDSMG and resuspended in NDSMG + EY. Samples were cooled from 20 to 5 degrees C at each of 2 rates (-0.05, -0.5 degrees C/min). A detrimental interaction between seminal plasma and egg yolk was noted for PMOT at 6 h and for both MOT and PMOT at > or = 24 h postcooling. Experiment 3 determined if egg yolk or glycerol affected fertility. The seminal treatments were 1) NDSMG, 2) NDSMG + EY with previous removal of seminal plasma, and 3) NDSMG + GL. All samples were cooled to 5 degrees C and stored 24 h before insemination. Embryo recovery rates 7 d after ovulation were lower for mares inseminated with spermatozoa cooled in NDSMG + EY (17%, 4/24) or NDSMG + GL (13%, 3/24) extenders, than semen cooled in NDSMG (50%, 12/24). We concluded that egg yolk (with seminal plasma removal) or glycerol added to NDSMG extender did not depress MOT or PMOT of cooled stallion spermatozoa but adversely affected fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号