首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S100A3 is a unique member of the EF-hand superfamily of Ca(2+)-binding proteins. It binds Ca(2+) with poor affinity (K(d) = 4-35 mm) but Zn(2+) with exceptionally high affinity (K(d) = 4 nm). This high affinity for Zn(2+) is attributed to the unusual high Cys content of S100A3. The protein is highly expressed in fast proliferating hair root cells and astrocytoma pointing toward a function in cell cycle control. We determined the crystal structure of the protein at 1.7 A. The high resolution structure revealed a large distortion of the C-terminal canonical EF-hand, which most likely abolishes Ca(2+) binding. The crystal structure of S100A3 allows the prediction of one putative Zn(2+) binding site in the C terminus of each subunit of S100A3 involving Cys and His residues in the coordination of the metal ion. Zn(2+) binding induces a large conformational change in S100A3 perturbing the hydrophobic interface between two S100A3 subunits, as shown by size exclusion chromatography and CD spectroscopy.  相似文献   

2.
A novel member of the S100 protein family, present in human placenta, has been characterized by protein sequencing, cDNA cloning, and analysis of Ca(2+)-binding properties. Since the placenta protein of 95 amino acid residues shares about 50% sequence identity with the brain S100 proteins alpha and beta, we proposed the name S100P. The cDNA was expressed in Escherichia coli and recombinant S100P was purified in high yield. S100P is a homodimer and has two functional EF hands/polypeptide chain. The low-affinity site (Kd = 800 microM), which, in analogy to S100 beta, seems to involve the N-terminal EF hand, can be followed by the Ca(2+)-dependent decrease in tyrosine fluorescence. The high-affinity site, provided by the C-terminal EF hand, influences the reactivity of the sole cysteine which is located in the C-terminal extension (Cys85). Binding to the high-affinity site (Kd = 1.6 microM) can be monitored by fluorescence spectroscopy of S100P labelled at Cys85 with 6-proprionyl-2-dimethylaminonaphthalene (Prodan). The Prodan fluorescence shows a Ca(2+)-dependent red shift of the maximum emission wavelength from 485 nm to 502 nm, which is accompanied by an approximately twofold loss in integrated fluorescence intensity. This indicates that Cys85 becomes more exposed to the solvent in Ca(2+)-bound S100P, making this region of the molecule, the so-called C-terminal extension, an ideal candidate for a putative Ca(2+)-dependent interaction with a cellular target. In p11, a different member of the S100 family, the C-terminal extension which contains a corresponding cysteine (Cys82 in p11), is involved in a Ca(2+)-independent complex formation with the protein ligand annexin II. The combined results support the hypothesis that S100 proteins interact in general with their targets after a Ca(2+)-dependent conformational change which involves hydrophobic residues of the C-terminal extension.  相似文献   

3.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

4.
In addition to binding Ca(2+), the S100 protein S100B binds Zn(2+) with relatively high affinity as confirmed using isothermal titration calorimetry (ITC; K(d) = 94 +/- 17 nM). The Zn(2+)-binding site on Ca(2+)-bound S100B was examined further using NMR spectroscopy and site-directed mutagenesis. Specifically, ITC measurements of S100B mutants (helix 1, H15A and H25A; helix 4, C84A, H85A, and H90A) were found to bind Zn(2+) with lower affinity than wild-type S100B (from 2- to >25-fold). Thus, His-15, His-25, Cys-84, His-85, and perhaps His-90 of S100B are involved in coordinating Zn(2+), which was confirmed by NMR spectroscopy. Previous studies indicate that the binding of Zn(2+) enhances calcium and target protein-binding affinities, which may contribute to its biological function. Thus, chemical shift perturbations observed here for residues in both EF-hand domains of S100B during Zn(2+) titrations could be detecting structural changes in the Ca(2+)-binding domains of S100B that are pertinent to its increase in Ca(2+)-binding affinity in the presence of Zn(2+). Furthermore, Zn(2+) binding causes helix 4 to extend by one full turn when compared to Ca(2+)-bound S100B. This change in secondary structure likely contributes to the increased binding affinity that S100B has for target peptides (i.e., TRTK peptide) in the presence of Zn(2+).  相似文献   

5.
The protease domain within the RUBV (rubella virus) NS (non-structural) replicase proteins functions in the self-cleavage of the polyprotein precursor into the two mature proteins which form the replication complex. This domain has previously been shown to require both zinc and calcium ions for optimal activity. In the present study we carried out metal-binding and conformational experiments on a purified cysteine-rich minidomain of the RUBV NS protease containing the putative Zn(2+)-binding ligands. This minidomain bound to Zn(2+) with a stoichiometry of approximately 0.7 and an apparent dissociation constant of <500 nM. Fluorescence quenching and 8-anilinonaphthalene-1-sulfonic acid fluorescence methods revealed that Zn(2+) binding resulted in conformational changes characterized by shielding of hydrophobic regions from the solvent. Mutational analyses using the minidomain identified residues Cys(1175), Cys(1178), Cys(1225) and Cys(1227) were required for the binding of Zn(2+). Corresponding mutational analyses using a RUBV replicon confirmed that these residues were necessary for both proteolytic activity of the NS protease and viability. The present study demonstrates that the CXXC(X)(48)CXC Zn(2+)-binding motif in the RUBV NS protease is critical for maintaining the structural integrity of the protease domain and essential for proteolysis and virus replication.  相似文献   

6.
Human S100A2 is an EF-hand calcium-binding S100 protein that is localized mainly in the nucleus and functions as tumor suppressor. In addition to Ca2+ S100A2 binds Zn2+ with a high affinity. Studies have been carried out to investigate whether Zn2+ acts as a regulatory ion for S100A2, as in the case of Ca2+. Using the method of competition with the Zn2+ chelator 4-(2-pyridylazo)-resorcinol, an apparent Kd of 25 nM has been determined for Zn2+ binding to S100A2. The affinity lies close to the range of intracellular free Zn2+ concentrations, suggesting that S100A2 is able to bind Zn2+ in the nucleus. Two Zn2+-binding sites have been identified using site directed mutagenesis and several spectroscopic techniques with Cd2+ and Co2+ as probes. In site 1 Zn2+ is bound by Cys21 and most likely by His 17. The binding of Zn2+ in site 2 induces the formation of a tetramer, whereby the Zn(2+) is coordinated by Cys2 from each subunit. Remarkably, only binding of Zn2+ to site 2 substantially weakens the affinity of S100A2 for Ca2+. Analysis of the individual Ca2+-binding constants revealed that the Ca2+ affinity of one EF-hand is decreased about 3-fold, whereas the other EF-hand exhibits a 300-fold decrease in affinity. These findings imply that S100A2 is regulated by both Zn2+ and Ca2+, and suggest that Zn2+ might deactivate S100A2 by inhibiting response to intracellular Ca2+ signals.  相似文献   

7.
S100 proteins are a multigenic family of low-molecular-weight Ca(2+)-binding proteins comprising 19 members. These proteins undergo a conformational change by Ca(2+)-binding and consequently interact with their target proteins. Recently, we reported that two antiallergic drugs, Amlexanox and Cromolyn, bind to S100A12 and S100A13 of the S100 protein family. In the present study, we used a newly developed antiallergic drug, Olopatadine, as a ligand for affinity chromatography and examined binding specificity of the drug to S100 protein family. Olopatadine binds specifically to S100 proteins, such as S100A1, S100B, S100L, S100A12, and S100A13, in a Ca(2+)-dependent manner but not to calmodulin. Mutagenesis study showed that amino acid residues 76-85 in S100A1 are necessary for its binding to Olopatadine. In contrast, residues 89-94 were identified as an Amlexanox-binding site in S100A1. Moreover, Olopatadine did not competitively inhibit S100A1-binding site of Amlexanox. Furthermore, we showed that Olopatadine inhibited the binding of S100A1 target protein's binding site peptides to S100A1. These results indicate that C-terminal region of S100A1 is important for antiallergic drug binding, although the drug binding sites are different according to each antiallergic drug. Differences in the binding sites of S100A1 to antiallergic drugs suggest that the regulatory functions of S100 proteins may exist in several regions. Therefore, these drugs may serve as useful tools for evaluating the physiological significance of S100 protein family.  相似文献   

8.
S100A5 is a novel member of the EF-hand superfamily of calcium-binding proteins that is poorly characterized at the protein level. Immunohistochemical analysis demonstrates that it is expressed in very restricted regions of the adult brain. Here we characterized the human recombinant S100A5, especially its interaction with Ca(2+), Zn(2+), and Cu(2+). Flow dialysis revealed that the homodimeric S100A5 binds four Ca(2+) ions with strong positive cooperativity and an affinity 20-100-fold higher than the other S100 proteins studied under identical conditions. S100A5 also binds two Zn(2+) ions and four Cu(2+) ions per dimer. Cu(2+) binding strongly impairs the binding of Ca(2+); however, none of these ions change the alpha-helical-rich secondary structure. After covalent labeling of an exposed thiol with 2-(4'-(iodoacetamide)anilino)-naphthalene-6-sulfonic acid, binding of Cu(2+), but not of Ca(2+) or Zn(2+), strongly decreased its fluorescence. In light of the three-dimensional structure of S100 proteins, our data suggest that in each subunit the single Zn(2+) site is located at the opposite side of the EF-hands. The two Cu(2+)-binding sites likely share ligands of the EF-hands. The potential role of S100A5 in copper homeostasis is discussed.  相似文献   

9.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

10.
The ionized calcium-binding adaptor molecule 1 (Iba1) with 147 amino acid residues has been identified as a calcium-binding protein, expressed specifically in microglia/macrophages, and is expected to be a key factor in membrane ruffling, which is a typical feature of activated microglia. We have determined the crystal structure of human Iba1 in a Ca(2+)-free form and mouse Iba1 in a Ca(2+)-bound form, to a resolution of 1.9 A and 2.1 A, respectively. X-ray structures of Iba1 revealed a compact, single-domain protein with two EF-hand motifs, showing similarity in overall topology to partial structures of the classical EF-hand proteins troponin C and calmodulin. In mouse Iba1, the second EF-hand contains a bound Ca(2+), but the first EF-hand does not, which is often the case in S100 proteins, suggesting that Iba1 has S100 protein-like EF-hands. The molecular conformational change induced by Ca(2+)-binding of Iba1 is different from that found in the classical EF-hand proteins and/or S100 proteins, which demonstrates that Iba1 has an unique molecular switching mechanism dependent on Ca(2+)-binding, to interact with target molecules.  相似文献   

11.
S100A16, a novel calcium-binding protein of the EF-hand superfamily   总被引:1,自引:0,他引:1  
S100A16 protein is a new and unique member of the EF-hand Ca(2+)-binding proteins. S100 proteins are cell- and tissue-specific and are involved in many intra- and extracellular processes through interacting with specific target proteins. In the central nervous system S100 proteins are implicated in cell proliferation, differentiation, migration, and apoptosis as well as in cognition. S100 proteins became of major interest because of their close association with brain pathologies, for example depression or Alzheimer's disease. Here we report for the first time the purification and biochemical characterization of human and mouse recombinant S100A16 proteins. Flow dialysis revealed that both homodimeric S100A16 proteins bind two Ca(2+) ions with the C-terminal EF-hand of each subunit, the human protein exhibiting a 2-fold higher affinity. Trp fluorescence variations indicate conformational changes in the orthologous proteins upon Ca(2+) binding, whereas formation of a hydrophobic patch, implicated in target protein recognition, only occurs in the human S100A16 protein. In situ hybridization analysis and immunohistochemistry revealed a widespread distribution in the mouse brain. Furthermore, S100A16 expression was found to be astrocyte-specific. Finally, we investigated S100A16 intracellular localization in human glioblastoma cells. The protein was found to accumulate within nucleoli and to translocate to the cytoplasm in response to Ca(2+) stimulation.  相似文献   

12.
Guanylyl cyclase-activating proteins are EF-hand Ca(2+)-binding proteins that belong to the calmodulin superfamily. They are involved in the regulation of photoreceptor membrane-associated guanylyl cyclases that produce cGMP, a second messenger of vertebrate vision. Here, we investigated changes in GCAP1 structure using mutagenesis, chemical modifications, and spectroscopic methods. Two Cys residues of GCAP1 situated in spatially distinct regions of the N-terminal domain (positions 18 and 29) and two Cys residues located within the C-terminal lobe (positions 106 and 125) were employed to detect conformational changes upon Ca(2+) binding. GCAP1 mutants with only a single Cys residue at each of these positions, modified with N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine, an environmentally sensitive fluorophore, and with (1-oxy-2,2,5,5-tetramethylpyrroline-3-methyl)methanethiosulfonate, a spin label reagent, were studied using fluorescence and EPR spectroscopy, respectively. Only minor structural changes around Cys(18), Cys(29), Cys(106), and Cys(125) were observed as a function of Ca(2+) concentration. No Ca(2+)-dependent oligomerization of GCAP1 was observed at physiologically relevant Ca(2+) concentrations, in contrast to the observation reported by others for GCAP2. Based on these results and previous studies, we propose a photoreceptor activation model that assumes changes within the flexible central helix upon Ca(2+) dissociation, causing relative reorientation of two structural domains containing a pair of EF-hand motifs and thus switching its partner, guanylyl cyclase, from an inactive (or low activity) to an active conformation.  相似文献   

13.
S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium. The large reorientation of this helix is a prerequisite for the interaction between each subunit of S100B and target proteins such as the tumor suppressor protein, p53. In this study, Tb(3+) was used as a probe to examine how binding of a 22-residue peptide derived from the C-terminal regulatory domain of p53 affects the rate of Ca(2+) ion dissociation. In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively. These data are consistent with a previously reported result, which showed that that target peptide binding to S100B enhances its calcium-binding affinity [Rustandi et al. (1998) Biochemistry 37, 1951-1960]. The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively. These two association rate constants are significantly below the diffusion control ( approximately 10(9) M(-)(1) s(-)(1)) and likely involve both Ca(2+) ion association and a Ca(2+)-dependent structural rearrangement, which is slightly different when the target peptide is present. EF-hand calcium-binding mutants of S100B were engineered at the -Z position (EF-hand 1, E31A; EF-hand 2, E72A; both EF-hands, E31A + E72A) and examined to further understand how specific residues contribute to calcium binding in S100B in the absence and presence of the p53 peptide.  相似文献   

14.
Wilder PT  Varney KM  Weiss MB  Gitti RK  Weber DJ 《Biochemistry》2005,44(15):5690-5702
The EF-hand calcium-binding protein S100B also binds one zinc ion per subunit with a relatively high affinity (K(d) approximately 90 nM) [Wilder et al., (2003) Biochemistry 42, 13410-13421]. In this study, the structural characterization of zinc binding to calcium-loaded S100B was examined using high-resolution NMR techniques, including structural characterization of this complex in solution at atomic resolution. As with other S100 protein structures, the quaternary structure of Zn(2+)-Ca(2+)-bound S100B was found to be dimeric with helices H1, H1', H4, and H4' forming an X-type four-helix bundle at the dimer interface. NMR data together with mutational analyses are consistent with Zn(2+) coordination arising from His-15 and His-25 of one S100B subunit and from His-85 and Glu-89 of the other subunit. The addition of Zn(2+) was also found to extend helices H4 and H4' three to four residues similar to what was previously observed with the binding of target proteins to S100B. Furthermore, a kink in helix 4 was observed in Zn(2+)-Ca(2+)-bound S100B that is not in Ca(2+)-bound S100B. These structural changes upon Zn(2+)-binding could explain the 5-fold increase in affinity that Zn(2+)-Ca(2+)-bound S100B has for peptide targets such as the TRTK peptide versus Ca(2+)-bound S100B. There are also changes in the relative positioning of the two EF-hand calcium-binding domains and the respective helices comprising these EF-hands. Changes in conformation such as these could contribute to the order of magnitude higher affinity that S100B has for calcium in the presence of Zn(2+).  相似文献   

15.
Koch M  Fritz G 《The FEBS journal》2012,279(10):1799-1810
S100A2 is an EF-hand calcium ion (Ca(2+))-binding protein that activates the tumour suppressor p53. In order to understand the molecular mechanisms underlying the Ca(2+) -induced activation of S100A2, the structure of Ca(2+)-bound S100A2 was determined at 1.3 ? resolution by X-ray crystallography. The structure was compared with Ca(2+) -free S100A2 and with other S100 proteins. Binding of Ca(2+) to S100A2 induces small structural changes in the N-terminal EF-hand, but a large conformational change in the C-terminal EF-hand, reorienting helix III by approximately 90°. This movement is accompanied by the exposure of a hydrophobic cavity between helix III and helix IV that represents the target protein interaction site. This molecular reorganization is associated with the breaking and new formation of intramolecular hydrophobic contacts. The target binding site exhibits unique features; in particular, the hydrophobic cavity is larger than in other Ca(2+)-loaded S100 proteins. The structural data underline that the shape and size of the hydrophobic cavity are major determinants for target specificity of S100 proteins and suggest that the binding mode for S100A2 is different from that of other p53-interacting S100 proteins. Database Structural data are available in the Protein Data Bank database under the accession number 4DUQ  相似文献   

16.
Sorcin, a 21.6 kDa cytosolic EF-hand protein which undergoes a Ca(2+)-induced translocation from cytoplasm to membranes, has been assigned to the newly defined penta EF-hand family. A molecular model of the C-terminal Ca(2+)-binding domain has been generated using as a template the X-ray coordinates of the corresponding domain in the calpain light subunit, the family prototype [Lin, G., et al. (1997) Nat. Struct. Biol. 4, 539-546]. The model indicates that in sorcin the three-dimensional structure is conserved and in particular that of EF1, the novel EF-hand motif characteristic of the family. On this basis, two stable fragments have been obtained and characterized. Just like the native protein, the sorcin Ca(2+)-binding domain (residues 33-198) is largely dimeric, interacts with the ryanodine receptor at physiological calcium concentrations, and undergoes a reversible, Ca(2+)-dependent translocation from cytosol to target proteins on Escherichia coli membranes. In contrast, the 90-198 fragment (residues 90-198), which lacks EF1 and EF2, does not bind Ca(2+) with high affinity and is unable to translocate. Binding of calcium to the EF1-EF2 pair is therefore required for the activation of sorcin which uses the C-terminal calcium-binding domain for interaction with the ryanodine receptor, a physiological target in muscle cells.  相似文献   

17.
Calmodulin is a member of the "EF-hand" family of Ca(2+)-binding proteins. It consists of two homologous globular domains, each containing two helix-loop-helix Ca(2+)-binding sites. To examine the contribution of individual Ca(2+)-binding sites to the Ca(2+)-binding properties of CaM, a series of four site-directed mutants has been studied. In each, the glutamic acid at position 12 in one of the four Ca(2+)-binding loops has been changed to a glutamine. One-dimensional 1H-NMR has been used to monitor Ca(2+)-induced changes in the mutant proteins, and the spectral changes observed for each mutant have been compared to those for wild-type CaM. In this way, the effect of each mutation on both the mutated site and the other Ca(2+)-binding sites has been examined. The mutation of glutamate to glutamine at position 12 in any of the EF-hand Ca(2+)-binding loops greatly decreases the Ca(2+)-binding affinity at that site, yet differs in the overall effects on Ca2+ binding depending on which of the four sites is mutated. When the mutation is in site I, there is only a small decrease in the apparent Ca(2+)-binding affinity of site II, and vice versa. Mutation in either site III or IV results in a large decrease in the apparent Ca(2+)-binding affinities of the partner C-terminal site. In both the N- and C-terminal domains, evidence for altered conformational effects in the partners of mutated sites is presented. In the C-terminus, the conformational consequences of mutating site III or site IV are strikingly different.  相似文献   

18.
A novel allergenic member of the family of Ca(2+)-binding proteins has been cloned from olive tree pollen. The isolated DNA codes for a protein of 171 amino acid residues, which displays four EF-hand sequence motifs. The encoded protein was overproduced in Escherichia coli and purified. The protein (18? omitted?795 Da), which binds Ca(2+) and IgE antibodies from patients allergic to olive pollen, undergoes Ca(2+)-dependent conformational changes. It is retained on a phenyl-Sepharose column, which indicates the existence of regulatory EF-hand domains. This fact suggests its involvement in Ca(2+)-dependent signal transduction events of the pollen grain. This allergen could be considered as a member of a new subfamily of EF-hand Ca(2+)-binding proteins since it displays a low amino acid sequence similarity with the so far known proteins.  相似文献   

19.
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.  相似文献   

20.
We report the biochemical characterization of calhepatin, a calcium-binding protein of the S100 family, isolated from lungfish (Lepidosiren paradoxa) liver. The primary structure, determined by Edman degradation and MS/MS, shows that the sequence identities with the other members of the family are lower than those between S100 proteins from different species. Calhepatin is composed of 75 residues and has a molecular mass of 8670 Da. It is smaller than calbindin D(9k) (78 residues), the smallest S100 described so far. Sequence analysis and molecular modelling predict the two EF-hand motifs characteristic of the S100 family. Metal-binding properties were studied by a direct 45Ca2+-binding assay and by fluorescence titration. Calhepatin binds Ca2+ and Cu2+ but not Zn2+. Cu2+ binding does not change the affinity of calhepatin for Ca2+. Calhepatin undergoes a conformational change upon Ca2+ binding as shown by the increase in its intrinsic fluorescence intensity and lambda(max), the decrease in the apo-calhepatin hydrodynamic volume, and the Ca2+-dependent binding of the protein to phenyl-Superose. Like most S100 proteins, calhepatin tends to form noncovalently associated dimers. These data suggest that calhepatin is probably involved in Ca2+-signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号