首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have studied the effect of free radical generating agents on the mono-(ADP)-ribosylation of rat liver cytosolic proteins. Our results show that this post-translational modification, whose physiological significance is still unclear, is activated by lipid peroxidant agents via activation of cytoplasmatic mono-(ADP)-ribosyltransferases. The implication of free radicals in this process is demonstrated by the fact that mono-(ADP)-ribosylation can be prevented by melatonin, N-tert-butyl-alpha-phenylnitrone and dithiothreitol. On the basis of our results, we discuss the modification of proteins caused by free radicals as a possible mechanism by which they damage the cell.  相似文献   

3.
D B Jump  T R Butt  M Smulson 《Biochemistry》1979,18(6):983-990
The relationship between poly(adenosine diphosphate) ribosylation of nuclear proteins and functionally different forms of chromatin from mid-S-phase HeLa nuclei was investigated. The major observations emerging from this study were that unique nonhistone proteins were modified in mid-S-phase HeLa nuclei. The major acceptor for poly(adenosine diphosphate-ribose) [poly(ADP-Rib)] was an internucleosomal nonhistone protein (protein C; 125 000 molecular weight). Histones H3, H1, H2b, and H2a but not H4 were ADP-ribosylated in S-phase nuclei. Chromatin fragments preferentially released by micrococcal nuclease were enriched in nonhistone proteins, poly(ADP)-ribosylated nuclear proteins, poly(ADP-Rib) polymerase activity and nascent DNA from the DNA replicating fork. In extended forms of chromatin, contiguous to the DNA replicating fork, poly(ADP-Rib) polymerase was maximally active. However, in chromatin distal to the replicating fork (i.e., more condensed structures), nucleosomal histones and histone H1 were not significantly ADP-ribosylated, and poly(ADP-Rib) polymerase activity was depressed two- to threefold. The data suggest that a subset of nucleosomes in extended regions of chromatin is subject to extensive ADP ribosylation.  相似文献   

4.
N Singh  G Poirier    P Cerutti 《The EMBO journal》1985,4(6):1491-1494
The tumor promoter phorbol-12-myristate-13-acetate (PMA) causes an increase in pol(ADP)-ribosylation in mouse and human fibroblasts via the intermediate formation of active oxygen. In contrast to poly(ADP)-ribosylation induced by the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine, de novo RNA and protein synthesis are required and the accumulation of the polymer occurs in the absence of detectable DNA strand breakage. Our results suggest a mechanism for PMA-induced modulation of chromatin structure and gene expression.  相似文献   

5.
The degree of complexing between DNA and chromosomal proteins and the ability of poly adenosine diphosphate ribosylation (ADP-ribosylation) of nuclear proteins to release this template restriction and expose DNA primer site changes during the HeLa cell cycle. Primer site exposure by NAD and poly ADP(ribose) polymerase was assessed with intact nuclei by single deoxynucleotide incorporation into DNA in the presence of saturating bacterial DNA polymerase. The most marked in vitro enhancement of primer site exposure by ADP-ribosylation occurred in early G1 phase, where cellular template restriction was the greatest. Cytoplasmic DNA polymerase also had high activity in early G1 phase of the cell cycle. Streptozotocin reduces NAD pools in HeLa cells; a concomitant stimulation of nuclear poly ADP(ribose) polymerase activity is noted.  相似文献   

6.
The (32)P-labelling patterns of phenol soluble and insoluble nonhistone proteins of in vivo labelled rat liver nuclei freed of the soluble nuclear proteins have been determined after separation by high-resolution gel electrophoresis. The bulk of the proteins of the nuclear residues was phenol soluble. Seven percent of the proteins of the nuclear residues was obtained with the aqueous phase. As shown in this paper both fractions contain (32)P-labelled proteins but they represent different types of nonhistone proteins.  相似文献   

7.
The enzyme poly(adenosine 5'-diphosphate (ADP)-ribose) polymerase (PARP-1) catalyzes the formation of (ADP)-ribose polymers on a variety of protein acceptors in a NAD+ -dependent manner. While PARP-1 is activated by DNA damage and plays a critical role in cellular survival mechanisms, its overactivation leads to a depletion of NAD+/ATP energy stores and ultimately to necrotic cell death. Due to this dual role of PARP in the cell, small-molecule inhibitors of the PARP family of enzymes have been widely investigated for use as potentiators of anticancer therapies and as inhibitors of neurodegeneration and ischemic injuries. Unfortunately, standard assays for PARP inhibition are not optimal for the high-throughput screening of compound collections or combinatorial libraries. Described herein is a highly sensitive, inexpensive, and operationally simple assay for the rapid assessment of PARP activity that relies on the conversion of NAD+ into a highly fluorescent compound. We demonstrate that this assay can readily detect PARP inhibitors in a high-throughput screen using 384-well plates. In addition, the assay can be used to determine IC50 values for PARP inhibitors that have a range of inhibitory properties. As existing PARP assays utilize specialized reagents such as radiolabeled/biotinylated NAD+ or antibodies to poly(ADP-ribose), the chemical quantitation method described herein offers a highly sensitive and convenient alternative for rapidly screening compound collections for PARP inhibition.  相似文献   

8.
The incorporation of 32P into nuclear nonhistone proteins was compared in rat liver in vivo, in liver slices incubated in vitro, and in isolated nuclei incubated with gamma-[32P]ATP. The highest specific activities of nuclear phosphorproteins were obtained by incubating isolated nuclei. However, the Radioactivity profiles of polyacrylamide gel electrophoretograms of these proteins differed from those obtained in vivo or in liver slice experiments. A group of low molecular weight nonhistone proteins exhibited a very high incporation of labelled phosphate. These proteins could be obtained from the interface when the phosphoproteins were isolated by the buffered phenol extraction procedure. Phosphorylated proteins were also obtained from three cytoplasmic fractions (mitochondria, microsomes, and cytosol). The specific activities of these proteins were much lower than of the nuclear phosphoproteins.  相似文献   

9.
10.
Effects of P1,P4-bis(5'-adenosyl)tetraphosphate and its phosphonate analogs on the ADP-ribosylation of H1 catalyzed by bovine testis ADP-ribose polymerase was investigated. Analogs App[CH(COCH3)]ppA and Ap[CH2]pppA as well as Ap4A inhibited poly(ADP)-ribosylation of histone H1 and at the same time accepted the ADP-ribosyl moiety of NAD. It was shown that inhibition of ADP-ribosylation of histone H1 is due to the competition of nucleotides with histone H1 for accepting ADP-ribosyl moiety of NAD on the one hand, and alteration of acceptor properties of the histone H1 on the other.  相似文献   

11.
We have studied the poly(ADP-ribosyl)ation of nuclear proteins in situ by examining the incorporation of [3H]NAD-derived ADP-ribose into polymers. We have devised a way to deliver [3H]NAD to cells growing in vitro, and we have determined the kinetics of uptake and incorporation into nuclear proteins using this delivery system. Incorporation into the histone fraction, known acceptors of poly(ADP-ribose), was examined and shown to be sensitive to the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide. Polyacrylamide gel electrophoresis of 3H-labeled proteins revealed radioactivity associated with known poly(ADP-ribose)-accepting proteins such as poly(ADP-ribose) polymerase and histones. These results were confirmed when we immunoreacted gel-separated proteins with anti-(ADP-ribose) generated in our laboratory.  相似文献   

12.
ATP-promoted efflux of poly(A)-rich RNA from isolated nuclei of prelabeled mouse lymphoma L5178y cells has an activation energy of 51.5 kJ/mol, similar to that found for the nuclear envelope nucleoside triphosphatase (48.1 kJ/mol) assumed to be involved in mediating nucleocytoplasmic transport of at least some RNA. Here we show that efflux of two specific poly(A)-rich mRNAs (actin and beta-tubulin) from isolated L-cell nuclei is almost totally dependent on the presence of ATP, while efflux of poly(A)-free histone mRNA (H4, H2B, and H1) also occurs to a marked extent in the absence of this nucleotide. Measurements of temperature dependence of transport rate revealed an activation energy of 56.1 kJ/mol for actin mRNA, while the activation energy for histone-H4-mRNA efflux was in the same range as that found for ATP-induced release of RNA from demembranated nuclei (about 15-20 kJ/mol). Addition of nonhydrolyzable nucleotide analogs of ATP to the in vitro system used for measurement of RNA transport did not result in release of nonhistone mRNA (actin), but enhanced the efflux of H4 mRNA to approximately the same extent as ATP. Although not absolutely required, addition of ATP stimulated the rate of export of histone mRNA about twofold. Only the poly(A)-rich RNA, but not the poly(A)-free RNA, released from isolated nuclei was found to compete with poly(A) for the nuclear envelope mRNA-binding site, indicating the mechanism of transport for both RNA classes to be distinct. Export of both nonhistone and histone mRNA was found to be inhibited by a monoclonal antibody against a p60 nuclear-pore-complex antigen. This antibody had no effect on the nucleoside triphosphatase, mediating transport of poly(A)-rich mRNA.  相似文献   

13.
A study was made of the influence of X-irradiation of rats with various doses on NAD-pyrophosphorylase and poly(ADP-ribose) polymerase activity of brain nuclei. It was shown that X-radiation was ineffective with regard to NAD-pyrophosphorylase activity of nuclei and increased their poly(ADP-ribose) polymerase activity. Stimulation of poly(ADP-ribose) polymerase activity of nuclei was a function of radiation dose and correlated with the decrease in the NAD content of nervous tissue. It was found that mainly nonhistone proteins were ADP-ribosylated in nuclei of both irradiated and nonirradiated rats.  相似文献   

14.
The pattern of staining for DNA, histone, and nonhistone protein has been studied in whole cells and in nuclei and chromosomes isolated by surface spreading. In whole interphase cells from bovine kidney tissue culture, nuclear staining for DNA and histones reveals numerous small, intensely stained clumps, surrounded by more diffusely stained material. Nuclei in whole cells stained for nonhistone proteins also contain intensely stained regions surrounded by diffuse stain. These intensely stained regions also stain for RNA, indicating that the regions contain nucleolar material. Electron microscopy of kidney cells confirms that multiple nucleoli are present. Kidney nuclei isolated by surface spreading show an even distribution of stain for DNA, histones, and nonhistone proteins, indicating that the surface forces disperse both condensed chromatin and nucleoli. DNA and protein staining was also studied in metaphase chromosomes from testes of the milkweed bug, Oncopeltus fasciatus. Staining for DNA and histones in metaphase chromosomes is essentially the same in sections of fixed and embedded testes as in preparations isolated by surface spreading. However, striking differences are noted in the distribution of nonhistone proteins. In sections, nonhistone stain is concentrated in extrachromosomal areas; metaphase chromosomes do not stain for nonhistone proteins. Chromosomes isolated by surface spreading, however, stain intensely for nonhistone proteins. This suggests that nonhistone proteins are bound to the chromosomes as a contaminant during the isolation procedure. The relationship of these findings to current work with chromosomes isolated for electron microscopy is discussed.  相似文献   

15.
The levels of sarcosine dehydrogenase and acid-nonextractable flavin in the inner matrix of mitochondria of rat liver are decreased in animals treated with triiodothyronine and are elevated in the mitochondria obtained from thyroidectomized animals. Administration of triiodothyronine does not affect the electron-transfer flavoprotein associated with the sarcosine dehydrogenase or the relative amounts of soluble and membrane-bound proteins of the mitochondria. In phosphate-washed mitochondria from either the controls or the triiodothyronine-treated rats, the O2 uptake equals the total of the [14C]formaldehyde and [β-14C]serine isolated as reaction products of the sarcosine-[14C]methyl group. In contrast to its restraint of sarcosine or choline oxidation in preparations capable of oxidative phosphorylation, ADP does not inhibit the oxidation of these substrates in mitochondria of rats given triiodothyronine.  相似文献   

16.
Poly(ADP ribosyl)ation, a post-translational modification of nuclear proteins catalyzed by poly (ADP ribose) polymerase, is an immediate response of most eukaryotic cells to DNA strand breaks and has been implicated in DNA repair and other cellular phenomena associated with DNA strand breakage. Poly(ADP ribose) polymerase activity levels have been frequently assayed by incubating permeabilized cells with radioactively labeled NAD+ as substrate. In such assays enzyme activation has routinely been achieved indirectly by prior exposure of living cells to carcinogens or by adding DNase I to permeabilized cells, thereby introducing strand breaks in chromosomal DNA. Here we show that, as an alternative method, the direct activation of purified poly(ADP ribose) polymerase by double-stranded oligonucleotides (N. A. Berger and S. I. Petzold, 1985, Biochemistry 24, 4352-4355) can be adopted for permeabilized cell systems. The inclusion of a palindromic decameric deoxynucleotide in the reaction buffer stimulated the enzyme activity in permeabilized Molt-3 human lymphoma cells up to 30-fold (at 50 micrograms/ml [corrected] oligonucleotide concentration) in a concentration-dependent manner. The activating effect of oligonucleotides was also evident when ethanol-fixed HeLa cells were postincubated with NAD+ to allow poly(ADP ribose) synthesis to occur in situ, which was detected as specific anti-poly (ADP ribose) immunofluorescence. We conclude that double-stranded oligonucleotides can be conveniently used as chemically and stoichiometrically well-defined poly (ADP ribose) polymerase activators in permeabilized or ethanol-fixed mammalian cells.  相似文献   

17.
Rat testis H1 proteins were poly(ADP‐ribosyl)ated in vitro. The modifying product, poly(ADP‐ribose), was found covalently bound to each histone variant at various extents and exhibited distinct structural features (linear and short, rather than branched and long chains). Interest was focused on the somatic H1a, particularly abundant in the testis, as compared with other tissues, and the testis‐specific H1t, which appears only at the pachytene spermatocyte stage of germ cell development. These H1s were modified with poly(ADP‐ribose) by means of two in vitro experimental approaches. In the first system, each variant was incubated with purified rat testis poly(ADP‐ribose)polymerase in the presence of [32P] NAD. In parallel, poly(ADP‐ribosyl)ated H1s were also prepared following incubation of intact rat testis nuclei with [32P] NAD. In both experiments, the poly(ADP‐ribosyl)ated proteins were purified from the native forms by means of phenyl boronic agarose chromatography. The results from both analyses were in agreement and showed qualitative differences with regard to the poly(ADP‐ribose) covalently associated with H1a and H1t. Comparison of the bound polymers clearly indicated that the oligomers associated with H1a were within 10–12 units long, whereas longer chains (≤20 ADP‐R units) were linked to H1t. Individual poly(ADP‐ribosyl)ated H1s were complexed with homologous H1‐depleted oligonucleosomes (0.5–2.5 kbp) in order to measure their ability to condensate chromatin, in comparison with the native ones. Circular dichroism showed that the negative charges of the oligomeric polyanion, although present in limited numbers, highly influenced the DNA‐binding properties of the analyzed H1s. In particular, the poly(ADP‐ribosyl)ated H1a and H1t had opposite effects on the condensation of H1‐depleted oligonucleosomes. J. Cell. Biochem. 76:20–29, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Endogenous ADP ribosylation of nonhistone high-mobility group (HMG) proteins and histone H1 was studied in cultured mouse mammary tumor cells following treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MNNG treatment of cells caused a rapid and transient increase in ADP ribosylation of histone H1 and HMG 1 and 2, whereas (ADP-ribose)n on HMG 14 and 17 was not affected. 3-Aminobenzamide, an inhibitor of (ADP-ribose)n synthetase, prevented the increase in ADP ribosylation of histone H1 and HMG 1 and 2. This inhibitor enhanced the cell-killing effect of MNNG, but had no significant effect on the removal of methylated purines. The preferential increase in ADP ribosylation of HMG 1 and 2 and histone H1 may be necessary for cell recovery from DNA damage.  相似文献   

19.
K W Adolph  M K Song 《FEBS letters》1985,182(1):158-162
ADP-ribosylation of HeLa nonhistone proteins was investigated by using [3H]adenosine as an in vivo radioactive label. The aim was to determine basic differences in the patterns of modification of interphase and metaphase nonhistones. Fluorography revealed a relatively small number of modified proteins for isolated metaphase chromosomes. In addition to the core histones, a protein of 116 kDa, which is identified as poly-(ADP-ribose) polymerase, was a primary acceptor of [3H]adenosine. Two-dimensional gels revealed a profound difference in the modification of metaphase and interphase nonhistones. For interphase nuclei, 3H label was distributed among a large number of nonhistone acceptors.  相似文献   

20.
The pattern of staining for DNA, histone, and nonhistone protein has been studied in whole cells and in nuclei and chromosomes isolated by surface spreading. In whole interphase cells from bovine kidney tissue culture, nuclear staining for DNA and histones reveals numerous small, intensely stained clumps, surrounded by more diffusely stained material. Nuclei in whole cells stained for nonhistone proteins also contain intensely stained regions surrounded by diffuse stain. These intensely stained regions also stain for RNA, indicating that the regions contain nucleolar material. Electron microscopy of kidney cells confirms that multiple nucleoli are present. Kidney nuclei isolated by surface spreading show an even distribution of stain for DNA, histones, and nonhistone proteins, indicating that the surface forces disperse both condensed chromatin and nucleoli. DNA and protein staining was also studied in metaphase chromosomes from testes of the milkweed bug, Oncopeltus fasciatus. Staining for DNA and histones in metaphase chromosomes is essentially the same in sections of fixed and embedded testes as in preparations isolated by surface spreading. However, striking differences are noted in the distribution of nonhistone proteins. In sections, nonhistone stain is concentrated in extrachromosomal areas; metaphase chromosomes do not stain for nonhistone proteins. Chromosomes isolated by surface spreading, however, stain intensely for nonhistone proteins. This suggests that nonhistone proteins are bound to the chromosomes as a contaminant during the isolation procedure. The relationship of these findings to current work with chromosomes isolated for electron microscopy is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号