首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth kinetics of an established human lymphoma cell line were analyzed by a variety of techniques utilizing various cell inocula (5 x 104 - 5 x 105 cells) dispensed into 60 mm diameter dishes. Techniques included pulse-labeled mitosis (PLM), continuous labeling with 3H-TdR, time-lapse photography (TLP), cell counts by electronic particle counter, and DNA histography obtained by pulse cytophotometry (PCP). There were no significant differences among values determined for any kinetic parameters as a function of cell concentration. the average doubling time of exponentially growing cells, regardless of cell inoculum, was 44.1 hr. the generation time determined by PLM was 31.1 hr with a SD of 4.7 hr. Transit times for each stage were: TG1= 10.6 hr, Ts= 9.9 hr, TG2= 9.9 hr, and Tm= 0.7 hr. Repeated experiments using continuous labeling with 3H-TdR demonstrated a TG2 of 6.3 hr. the longer value determined by PLM is possibly due to the technical manipulations of this procedure which may delay pulse-labeled cells from resuming cell cycle transit. Hence, values for cell cycle stages were recalculated to give TG1= 14.1 hr, Ts= 9.9 hr, TG2 = 6.3 hr, and Tm= 0.7 hr. These results were used to compute the size of each cell cycle stage compartment pool and corresponded very closely to values defined directly by PCP. TLP analysis considered only cells that produced colonies of at least thirty-two cells. Generation times ranged from 8 to 89 hr and showed a positive skewness. the average value measured for 330 divisions was 34.5 hr with a SD of 13.2 hr. Thus, the variance predicted by curve fitting of the PLM data did not correlate with that defined by time-lapse photography nor did it encompass the range in generation times observed directly by TLP. There was a positive correlation between sister-sister cell generation times (+0.66) but no relation was noted for mother-daughter values.  相似文献   

2.
Time-lapse films were made of PC13 embryonal carcinoma cells, synchronized by mitotic shake off, in the absence and presence of retinoic acid. Using a method based on the transition probability model, cell cycle parameters were determined during the first five generations following synchronization. In undifferentiated cells, cell cycle parameters remained identical for the first four generations, the generation time being 11–12 hr. In differentiating cells, with retinoic acid added at the beginning of the first cycle, the first two generations were the same as controls. The duration of the third generation, however, was increased to 15.7 hr while the fourth and fifth generation were approximately 20 hr, the same as in exponentially growing, fully differentiated cells. The increase in generation time of dividing cells was principally due to an increase in the length of S phase. Cell death induced by retinoic acid also occurred principally in the third and subsequent generations. Cell population growth was then significantly less than that expected from the generation time derived from cycle analysis of dividing cells. Cells lysed frequently as sister pairs suggesting susceptibility to retinoic acid toxicity determined in a generation prior to death. Morphological differentiation, as estimated by the area of substrate occupied by cells, was shown to begin in the second cell cycle after retinoic acid addition. These results demonstrate that as in the early mammalian embryo, differentiation of embryonal carcinoma cells to an endoderm-like cell is also accompanied by a decrease in growth rate but that this is preceded by acquisition of the morphology characteristic of the differentiated progeny.  相似文献   

3.
The consequences of parental exposure to epidermal growth factor (EGF), for progeny cell cycle times was investigated. Slowly dividing mouse 3T3 fibroblasts were exposed to EGF for 8 hr, the EGF was withdrawn, and the cell cycle times of parental and progeny cells were measured by time-lapse video microscopy. It was observed that exposure to EGF induced a round of cell division following a lag phase of approximately 8 hr. The progeny of these cells exhibited accelerated cell cycle times compared to cells that had not been exposed to EGF. Parental cell division time was significantly correlated with progeny cell cycle time. Sibling progeny cell cycle times were also significantly correlated. EGF can therefore apparently exert an effect on the cell cycle times of more than one generation of cells.  相似文献   

4.
The growth kinetics of an established human lymphoma cell line were analyzed by a variety of techniques utilizing various cell inocula (5 X 10(4)--5 X 10(5) cells) dispensed into 60 mm diameter dishes. Techniques included pulse-labeled mitosis (PLM), continuous labeling with 3H-TdR, time-lapse photography (TLP), cell counts by electronic particle counter, and DNA histography obtained by pulse cytophotometry (PCP). There were no significant differences among values determined for any kinetic parameters as a function of cell concentration. The average doubling time of exponentially growing cells, regardless of cell inoculum, was 44.1 hr. The generation time determined by PLM was 31.1 hr with a SD of 4.7 hrs. Transit times for each stage were: TG1 = 10.6 hr, TS = 9.9 hr, TG2 = 9.9 hr, and TM = 0.7 hr. Repeated experiments using continuous labeling with 3H-TdR demonstrated a TG2 of 6.3 hr. The longer value determined by PLM is possibly due to the technical manipulations of this procedure which may delay pulse-labeled cells from resuming cell cycle transit. Hence, values for cell cycle stages were recalculated to give TG1 = 14.1 hr, TS = 9.9 hr, TG2 = 6.3 hr, and TM = 0.7 hr. These results were used to compute the size of each cell cycle stage compartment pool and corresponded very closely to values defined directly by PCP. TLP analysis considered only cells that produced colonies of at least thirty-two cells. Generation times ranged from 8 to 89 hr and showed a positive skewness. The average value measured for 330 divisions was 34.5 hr with a SD of 13.2 hr. Thus, the variance predicted by curve fitting of the PLM data did not correlate with that defined by time-lapse photography nor did it encompass the range in generation times observed directly by TLP. There was a positive correlation between sister-sister cell generation times (+0.66) but no relation was noted for mother-daughter values.  相似文献   

5.
The cell flow and cell loss of an in vivo growing Ehrlich ascites tumour were calculated by sequential estimation of changes in the total number of cells in the cell cycle compartments. Normal growth was compared with the grossly disturbed cell flow evident after a 5 Gy X-irradiation. The doubling time of normal, exponentially growing cells was 24 hr. the generation time was 21 hr based on double-isotope labelling studies and the potential doubling time was 21 hr. Thus, the growth fraction was 1.0 and the cell loss rate about 0.5%/hr. Following irradiation, a transiently increased relative outflow rate from all cell cycle compartments was found at about 3 and 40 hr, and from S phase at 24 hr after irradiation. Minimum flow rates from all compartments were found up to 20 hr. Cell loss as calculated from the cell flow was compared with non-viable cells determined by Percoll density separation. Increase in cell loss as well as non-viable cells was observed at 24 hr after irradiation at the time of release of the irradiation-induced G2 blockage. Up to 50 hr, about 70% of the initial total number of cells were lost. the experiments show the applicability and limitations of cell flow and cell loss calculations by sequential analysis of the total number of cells in the various parts of the cell cycle.  相似文献   

6.
Rat C-6 glioma cells were grown on a sponge foam matrix in an organ culture system and the cell cycle parameters, including the growth fraction (GF), were assessed after autoradiography. the zones of growth consisted of a compact upper layer (UL) at the gaseous interface, a central necrotic layer and a deeper lower layer (LL) which invaded the matrix. the fraction of continuously labeled mitoses (FCLM) was similar in both the UL and LL cells. the derivatives of the FCLM curves obtained in three experiments gave an average modal TG2 of 5 hr. A mathematical model relating GF, TG2, TC and labeling index as a function of time, LI(t), was devised for cells in a steady state exposed continuously to tritiated thymidine and was applied to data obtained from UL cells. A mean GF of 9% (range: 8–10%) and a mean cell cycle time (TC') of 27 hr (range: 13–47 hr) were obtained. the mean TS was calculated to be 11 hr (range: 8–16 hr) by the method of grain counts per mitotic figure or grain index (GI). Knowledge of TS permitted alternative calculation of the cell cycle time from the equation TS/TC= LI(0)/GF: this gave a mean cell cycle time (TC) of 29 hr (range: 20–45 hr). Except for the GF, the cell kinetics were comparable to those of the same cell line grown in monolayer culture. the GF in the in vitro system described is in the lower range reported in some human malignant gliomas in vivo.  相似文献   

7.
The age-dependent, ultraviolet light (UVL) (254 nm)-induced division delay of surviving and nonsurviving Chinese hamster cells was studied. The response was examined after UVL exposures adjusted to yield approximately the same survival levels at different stages of the cell cycle, 60% or 30% survival. Cells irradiated in the middle of S suffered the longest division delay, and cells exposed in mitosis or in G1 had about the same smaller delay in division. Cells irradiated in G2, however, were not delayed at either survival level. It was further established, after exposures that yielded about 30% survivors at various stages of the cycle, that surviving cells had shorter delays than nonsurvivors. This difference was not observed for cells in G2 at the time of exposure; i.e., neither surviving nor nonsurviving G2 cells were delayed in division. The examination of mitotic index vs. time revealed that most cells reach mitosis, but all of the increase in the number of cells in the population can be accounted for by the increase of the viable cell fraction. These observations suggest strongly that nonsurviving cells, although present during most of the experiment, are stopped at mitosis and do not divide. Cells in mitosis at the time of irradiation complete their division, and in the same length of time as unirradiated controls. Division and mitotic delays after UVL are relatively much larger than after X-ray doses that reduce survival to about the same level.  相似文献   

8.
The DNA synthesis pattern and several kinetic parameters of in vitro PHA stimulated normal and CLL lymphocytes were determined. The DNA synthesis peak of CLL lymphocytes occurred 2–3 days later than that of normal lymphocytes. The generation time, estimated by the labeled mitoses method, was found to be 28 hr and 20 hr for CLL and normal lymphocytes respectively. This difference was mainly due to longer S and Gt periods. It was also shown that both CLL and normal lymphocytes divide several times. These data were confirmed by the chromatid labeling pattern and by the halving of the grains and the double labeling techniques. By combining continuous and pulse labeling the growth fraction of CLL lymphocytes was found to be progressively increasing, because of the recruitment of new cells in cycle, from the third day of culture. Therefore the delayed peak of DNA synthesis of CLL lymphocytes was caused by a longer cell cycle and by a longer pre-replicative phase.  相似文献   

9.
SYNOPSIS. Using continuous flow cultures based on the chemostat principle, we varied the cell generation times of the ciliate Tetrahymena pyriformis strain GL, from 4.9 to 22.2 hr and studied various parameters of the cell cycle at 28 C. These included: the duration of the periods required for oral morphogenesis, macronuclear division, cell division, G1 S, and G2. The size of individual cells was also measured. Independent of the growth rate, the period of oral morphogenesis occurred during the last 90 min of the cell cycle. In all cases macronuclear and cell divisions took place during the last part of these 90 min, and the final macronuclear separation occurred just before final cell separation. The S-period increased slightly, while the G1 and G2 both increased in roughly the same relative proportion to the increasing generation times. Slowly growing cells (generation time 20.5 hr) were shorter but broader and somewhat larger in volume than quickly growing cells (generation time 4.9 hr).  相似文献   

10.
Abstract. The interdivisional times of Friend murine erythroleukaemia cells which are growing continuously, or during terminal erythroid differentiation after exposure to dimethyl sulphoxide (DMSO), were determined by time lapse video photography. the median interdivisional times were found to increase from 11.75 hr before exposure to DMSO, to 24.0 hr at 72 hr after exposure. This increase in median interdivisional time was accompanied by an increase in heterogeneity of interdivisional times (% CV = 8-5 → 40.8), by an increase in the similarity of sister interdivisional times (ryy= 0.622 → 0.925), and by a decrease in the fraction of cells observed to divide ( F = 1. 0 → 0.807). Cells exposed to DMSO for 72 hr can be induced to divide at least once with nearly normal interdivisional times, if they are resuspended at a tenfold higher cell concentration. Computer simulations of cell cycle regulation, based on the opposing reactions model of Murphy, generate interdivisional time distributions which resemble the experimental data better than the single transition probability model of Smith and Martin.  相似文献   

11.
The interdivisional times of Friend murine erythroleukaemia cells which are growing continuously, or during terminal erythroid differentiation after exposure to dimethyl sulphoxide (DMSO), were determined by time lapse video photography. The median interdivisional times were found to increase from 11.75 hr before exposure to DMSO, to 24.0 hr at 72 hr after exposure. This increase in median interdivisional time was accompanied by an increase in heterogeneity of interdivisional times (%CV = 8.5----40.8), by an increase in the similarity of sister interdivisional times (ryy = 0.622----0.925), and by a decrease in the fraction of cells observed to divide (F = 1.0----0.807). Cells exposed to DMSO for 72 hr can be induced to divide at least once with nearly normal interdivisional times, if they are resuspended at a tenfold higher cell concentration. Computer simulations of cell cycle regulation, based on the opposing reactions model of Murphy, generate interdivisional time distributions which resemble the experimental data better than the single transition probability model of Smith and Martin.  相似文献   

12.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) (Laerum, 1969) and brought into a mono-disperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G^ S and (G2+ M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the Gj phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

13.
The decreased growth rate observed in older muscle cultures has been attributed to the withdrawal of cells from the proliferative pool by fusion. The possibility was examined that this decrease reflects changes in the cell cycle as well. Before fusion, the cycle is relatively short and uniform (10.0 ± 2.7 hr) becoming greatly extended and more variable (19.2 ± 8.5 hr) in cultures undergoing fusion. Most of the increase in generation time is introduced by a long, variable G1 phase, that phase to which fusion is restricted. These stage-specific cycle characterstics are a function of changes occurring in the medium, rather than of time in culture. Older cultures, refed fresh medium acquire the cell cycle characteristics of younger cultures, and conversely, early cultures fed medium collected from older cultures exhibit cycle measurements typical of older cultures.Although the mean G1 time almost doubles at the time of fusion, there is no evidence that cells actually withdraw from the cycle prior to fusion. Continuous labeling before and after the initiation of fusion indicate that at all stages virtually 100% of the mononucleated cells incorporate 3H-TdR. Since fusion occurs in G1, it seems reasonable to assume that some preparation for fusion occurs during this phase and the probability of fusion increases with protraction of G1.  相似文献   

14.
The cell flow and cell loss of an in vivo growing Ehrlich ascites tumour were calculated by sequential estimation of changes in the total number of cells in the cell cycle compartments. Normal growth was compared with the grossly disturbed cell flow evident after a 5 Gy X-irradiation. The doubling time of normal, exponentially growing cells was 24 hr. The generation time was 21 hr based on double-isotope labelling studies and the potential doubling time was 21 hr. Thus, the growth fraction was 1.0 and the cell loss rate about 0.5%/hr. Following irradiation, a transiently increased relative outflow rate from all cell cycle compartments was found at about 3 and 40 hr, and from S phase at 24 hr after irradiation. Minimum flow rates from all compartments were found up to 20 hr. Cell loss as calculated from the cell flow was compared with non-viable cells determined by Percoll density separation. Increase in cell loss as well as non-viable cells was observed at 24 hr after irradiation at the time of release of the irradiation-induced G2 blockage. Up to 50 hr, about 70% of the initial total number of cells were lost. The experiments show the applicability and limitations of cell flow and cell loss calculations by sequential analysis of the total number of cells in the various parts of the cell cycle.  相似文献   

15.
CELLULAR AND NUCLEAR VOLUME DURING THE CELL CYCLE OF NHIK 3025 CELLS   总被引:7,自引:0,他引:7  
The distribution of cellular and nuclear volume in synchronous populations of NHIK 3025 cells, which derive from a cervix carcinoma, have been measured by electronic sizing during the first cell cycle after mitotic selection. Cells given an X-ray dose of 580 rad in G1, were also studied. During the entire cell cycle the volume distribution of both cells and nuclei is an approximately Gaussian peak with a relative width at half maximum of about 30%. About half of this width is due to imperfect synchrony whereas the rest is associated with various time invariant factors. During S the mean volume of the cells grows exponentially whereas the nuclear volume increases faster than for exponential kinetics. Hence, although cellular and nuclear volumes are closely correlated, their ratio does not remain constant during the cell cycle. Volume growth during the first half of G1 is negligible especially for nuclei where the growth appears to be closely associated with DNA-synthesis. For unirradiated cells the growth of cellular and nuclear volume is negligible also during G2+ M. In contrast, the X-irradiated cells continue to grow during the 6 hr mitotic delay with a rate that is constant and about half of that observed in late S. Hence, radiation induced mitotic delay does not appear merely as a lengthening of an otherwise normal G2. During G1 and S the irradiated cells were identical to unirradiated ones with respect to all the parameters measured.  相似文献   

16.
HeLa Chessen cells have a doubling time of 18 hr when grown in MEM containing 10% calf serum and antibiotics. When hydrocortisone (1.7 μg/ml) is added to exponentially distributed cells in log growth in this medium, a new pattern of growth begins to emerge after 10–12 hr. This pattern is characterized by a transitional state lasting for about 6 hr, and then a new doubling time of about 35 hr is maintained thereafter. Hydrocortisone removes about 5% of the cells from the proliferative pool and extends the generation time of proliferating cells to about 30 hr. The extension of the generation cycle appears to occur almost entirely in late G1. Cells grown as clones (average 6 cells/clone) prior to the addition of hydrocortisone, undergo these changes with doses as low as 0.00017 μg/ml of medium. When the average clone size is 1.5 cells per clone, the drug concentration must be 0.017 μg/ml or higher to initiate this response. The HeLa S3 strain continues to grow with an 18-hr doubling time in the presence of hydrocortisone after a temporary delay in growth occurring between the 12th and 16th hour.  相似文献   

17.
The time of onset and duration of division delay induced by exposure to 250-kvp x-irradiation have been measured in several mammalian cell lines grown in suspension culture. Unique times of action (i.e. interval from irradiation to cessation of division) late in G2 are characteristic for HeLa, L-5178Y, and Chinese hamster cells, and the time of action is independent of dose over the range 25-800 rads. The duration of delay was directly proportional to dose; all irradiated cells divided at least once and maintained their relative positions in the life cycle for periods exceeding one generation time. Neither random nor synchronous cultures exposed at varying times in the life cycle exhibited differences in radiation sensitivity measured either by onset or duration of the delay period. The time of action was experimentally indistinguishable from the point marking completion of protein synthesis essential for division, leading to speculation that division delay involves a translation defect.  相似文献   

18.
Summary We synchronized Drosophila cell lines (Schneider's line 2 and Kc) by allowing the cells to enter the stationary phase of growth and then diluting them into fresh culture medium. The cells of both cell lines entered S phase, after an 8- to 14-hr delay, in a state of partial synchrony; 60 to 80% of the cell population accumulated in S phase. Measurements of the cell cycle phases of Schneider's line 2 cells (S=14 to 16 hr; G2=6 to 8 hr; M=0.4 hr) were similar to those of Kc cells. This work was performed under the auspices of the U.S. Energy Research and Development Administration. A.R. was supported by an NIH post-doctoral fellowship, No. CA01060.  相似文献   

19.
The rate at which P19 embryonal carcinoma cells in monolayer culture become anchorage dependent during differentiation induced by retinoic acid (RA) was investigated. In both nonsynchronized cultures and cultures synchronized by mitotic selection, the ability to grow in semisolid medium, characteristic of the malignant stem cell, decreased after a lag period of about 12 hr in the continuous presence of RA, prior to an increase in cell generation time. However, striking differences between synchronized and nonsynchronized cultures were observed in their commitment to differentiation following RA removal. After only 2 hr of exposure to RA, synchronized cells continued a program of differentiation in which they became anchorage dependent, while at least 24 hr of exposure was required for exponentially growing cells to become similarly committed. Induction of anchorage dependence by RA was also strikingly cell cycle dependent; 2 or 4 hr of exposure of synchronized cells to RA in G1 phase, when the intrinsic capacity for soft agar growth is low, was sufficient to commit cells to anchorage dependence, but a similar exposure in S phase was not. Together, these results suggested that interactions between cells in different cell cycle phases in asynchronous cultures influenced commitment since exposure to RA for more than one cycle (13 hr) was required for all cells to become anchorage dependent. Increased plasminogen activator secretion and epidermal growth factor binding, markers of certain differentiated cell types, increased only 3 and 5 days after RA addition, respectively, and were not induced by pulsed exposure to RA of less than 24 hr, even in synchronized cells.  相似文献   

20.
Abstract. In order to characterize the growth pattern of the human promyelocytic leukaemia cell line HL60, its kinetic parameters were studied. The doubling time was calculated from serial cell counts, the duration of the various cell cycle phases from the analysis of the labelled mitoses curve, and quiescent population from continuous labelling experiments. Proliferation in culture was exponential up to a saturation density of about 3.0 × 106 cells/ml, with a doubling time of 34.0 hr. The cell cycle duration was 24.3 ± 4.1 hr (SD), and that of the cell cycle phases was: G1, 3.8 ± 2.2 hr; S, 15.1 ± 3 hr; and G2, 5.4 ± 1.2 hr. The growth fraction was 0.85, and cell loss was restricted to the quiescent cells. The HL60 cell line, with fully characterized kinetics, provides a useful tool for the in vitro study of substances which may affect human leukaemic myelopoietic proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号