首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cryopreservation of rye protoplasts by vitrification   总被引:12,自引:0,他引:12       下载免费PDF全文
A procedure has been developed for the vitrification of mesophyll protoplasts isolated from leaves of nonacclimated (NA) and cold-acclimated (ACC) winter rye seedlings (Secale cereale L. cv Puma). The procedure involves (a) equilibration (loading) of the protoplasts with an intermediate concentration (1.5, 1.75, or 2.0 molar) of ethylene glycol (EG) at 20°C; (b) dehydration of the protoplasts in a concentrated vitrification solution made of 7 molar EG + 0.88 molar sorbitol + 6% (w/v) bovine serum albumin (BSA) at 0°C; (c) placing the protoplasts into polypropylene straws and quenching in liquid nitrogen (LN2); and (d) recovery of the protoplasts from LN2 and removal (unloading) of the vitrification solution. For NA protoplasts, 47 + 1% survival was obtained following recovery from LN2 if the protoplasts were first loaded with 1.75 molar EG prior to the dehydration step. However, to achieve this level of survival, NA protoplasts had to be unloaded in a hypertonic (2.0 osmolal [osm]) sorbitol solution. If they were unloaded in an isotonic solution (0.53 osm), survival was 3±2%. In contrast, survival of ACC protoplasts following recovery from LN2 was 34 ± 10% when the protoplasts were loaded in a 2.0 molar EG solution and unloaded in an isotonic sorbitol solution (1.03 osm). If ACC protoplasts were unloaded in an hypertonic sorbitol solution (1.5 osm), survival was 51 ± 9%. These results indicate that the osmotic excursions incurred during the procedure are a major factor affecting survival.  相似文献   

4.
Antifreeze proteins in winter rye   总被引:15,自引:0,他引:15  
Six antifreeze proteins, which have the unique ability to adsorb onto the surface of ice and inhibit its growth, have been isolated from the apoplast of winter rye leaves where ice forms at subzero temperatures. The rye antifreeze proteins accumulate during cold acclimation and are similar to plant pathogenesis-related proteins, including two endoglucanase-like, two chitinase-like and two thaumatin-like proteins. Immunolocalization of the glucanase-like antifreeze proteins showed that they accumulate in mesophyll cell walls facing intercellular spaces, in pectinaceous regions between adjoining mestome sheath cells, in the secondary cell walls of xylem vessels and in epidermal cell walls. Because the rye antifreeze proteins are located in areas where they could be in contact with ice, they may function as a barrier to the propagation of ice or to inhibit the recrystallization of ice. Antifreeze proteins similar to pathogenesis-related proteins were also found to accumulate in closely-related plants within the Triticum group but not in freezing-tolerant dicotyledonous plants. In winter wheat, the accumulation of antifreeze proteins and the development of freezing tolerance are regulated by chromosome 5. Rye antifreeze proteins may have evolved from pathogenesis-related proteins, but they retain their catalytic activities and may play a dual role in increasing both freezing and disease resistance in overwintering plants.  相似文献   

5.
Extracellular pathogenesis-related proteins, including glucanases, are expressed at cold temperatures in winter rye (Secale cereale) and display antifreeze activity. We have characterized recombinant cold-induced glucanases from winter rye to further examine their roles and contributions to cold tolerance. Both basic beta-1,3-glucanases and an acidic beta-1,3;1,4-glucanase were expressed in Escherichia coli, purified, and assayed for their hydrolytic and antifreeze activities in vitro. All were found to be cold active and to retain partial hydrolytic activity at subzero temperatures (e.g. 14%-35% at -4 degrees C). The two types of glucanases had antifreeze activity as measured by their ability to modify the growth of ice crystals. Structural models for the winter rye beta-1,3-glucanases were developed on which putative ice-binding surfaces (IBSs) were identified. Residues on the putative IBSs were charge conserved for each of the expressed glucanases, with the exception of one beta-1,3-glucanase recovered from nonacclimated winter rye in which a charged amino acid was present on the putative IBS. This protein also had a reduced antifreeze activity relative to the other expressed glucanases. These results support the hypothesis that winter rye glucanases have evolved to inhibit the formation of large, potentially fatal ice crystals, in addition to having enzymatic activity with a potential role in resisting infection by psychrophilic pathogens. Glucanases of winter rye provide an interesting example of protein evolution and adaptation aimed to combat cold and freezing conditions.  相似文献   

6.
Windle JJ 《Plant physiology》1988,88(4):1388-1396
Lipid-lipid and lipid-protein interactions in the plasma membranes of whole cells and protoplasts and an isolated plasma membrane fraction from winter rye (Secale cereale L. cv Puma) have been studied by spin labeling. Spectra were recorded between −40°C and 40°C using the freely diffusing spin-label, 16-doxyl stearic acid, as a midbilayer membrane probe. The probe was reduced by the whole cells and protoplasts and reoxidized by external potassium ferricyanide. The reoxidized probe was assumed to be localized in the plasma membrane. The spectra consisted of the superposition of a narrow and a broad component indicating that both fluid and immobilized lipids were present in the plasma membrane. The two components were separated by digital subtraction of the immobilized component. Temperature profiles of the membranes were developed using the percentage of immobilized lipid present at each temperature and the separation between the outermost hyperfine lines for the fluid lipid component. Lipid immobilization was attributed to lipid-protein interactions, lipid-cell wall interactions, and temperature-induced lipid phase transitions to the gel-state. Temperature profiles were compared for both cold-hardened and nonhardened protoplasts, plasma membranes, and plasma membrane lipids, respectively. Although cold-hardening extended the range of lipid fluidity by 5°C, it had no effect on lipid-protein interactions or activation energies of lipid mobility. Differences were found, however, between the temperature profiles for the different samples, suggesting that alterations in the plasma membrane occurred as a consequence of the isolation methods used.  相似文献   

7.
8.
Antifreeze protein produced endogenously in winter rye leaves   总被引:30,自引:0,他引:30  
After cold acclimation, winter rye (Secale cereale L.) is able to withstand the formation of extracellular ice at freezing temperatures. We now show, for the first time, that cold-acclimated winter rye plants contain endogenously produced antifreeze protein. The protein was extracted from the apoplast of winter rye leaves, where ice forms during freezing. After partial purification, the protein was identified as antifreeze protein because it modified the normal growth pattern of ice crystals and depressed the freezing temperature of water noncolligatively.  相似文献   

9.
The effect of gametocides FW-450, maleic hydrazide and Dalapone on the course of microsporogenesis, gametogenesis and starch synthesis in pollen grains of winter rye ev. ‘Esto’ was investigated. Solutions containing various concentrations of tested substances were applied on leaves in amount of 2.5 ml and 5.0 ml per plant at the beginning, at the full and at the end of shooting. The effect of gametocides was detectable already in the phase of microspore formation when a decrease of anther weight, pollen grain size and starch content in grains and an increase of the number of microspores with nonfinished development were observed. The manner and the extent of injuries were dependent on the applied substance, its concentration and on period of its application.  相似文献   

10.
Coleoptile removal-induced ethylene production was investigated in light-grown winter rye seedlings. Removal of the coleoptile induced 1-aminocyclopropane-l-carboxylic acid (ACC) synthesis and ethylene production by primary leaves and caused an inhibition of elongation growth of the leaves. The activity of ethylene-forming enzyme (EFE) was associated with the increase in ethylene evolution. Both rise in ethylene and ACC production, as well as EFE activity were inhibited by cycloheximide. Wounding the tissue 40 min after the initial treatment resulted in the second increase in ethylene evolution. Derooting of the seedlings without coleoptile removal did not induce ethylene production. It is suggested that the coleoptile represents a barrier for wound-induced ethylene production from actively growing leaf tissue.  相似文献   

11.
Permeability of the suberized mestome sheath in winter rye   总被引:4,自引:3,他引:1       下载免费PDF全文
Mestome sheath cells of winter rye (Secale cereale L. cv Puma) deposit suberized lamellae in their secondary cell walls. Histochemical tests including acid digestion and staining with Sudan IV and Chelidonium majus root extract were used to detect the presence of suberin in the primary cell wall. There was no evidence of a Casparian band between adjacent mestome sheath cells. Fluorescent dye techniques were used to trace solute movement through the rye leaf apoplast. Calcofluor white M2R, a fluorescent dye which binds to cell walls as it moves apoplastically, proved to be too limited in its mobility in leaves to test mestome sheath permeability. Trisodium 3-hydroxy-5,8,10 pyrene trisulfonate, a fluorescent dye which is mobile in the apoplast, moved easily up the vascular bundles in the transpiration stream, and diffused outward from the veins to the epidermal cell walls within minutes of reaching a particular level in the leaf. We conclude that the suberized mestome sheath of rye leaves is freely permeable to solutes moving apoplastically through radial primary cell walls.  相似文献   

12.
High yield isolation of mesophyll protoplasts from wheat, barley and rye   总被引:1,自引:0,他引:1  
Efficient procedures are described for high-yield isolation of mesophyll protoplasts from spring wheat ( Triticum aestivum L. cv. Glenlea), winter wheat ( Triticum aestivum L. cv. Frederick), barley ( Hordeum vulgare L. cv. Bruce) and rye ( Secale cereale L. cv. Puma). Factors such as plant age, composition of the incubation medium during isolation, purification procedures and culture medium affect protoplast yield, viability and metabolic competence, as measured by light-dependent CO2 fixation. Optimal osmolarity of the isolation medium was equivalent to 1.8 times that measured in the leaves of all plant material used. The presence of 2 m M ascorbic acid in the preincubation and isolation medium increased the yield by 50% and conserved viability and metabolic competence. The protoplasts were stable for up to 48 h without loss of either viability or of original activity of CO2 fixation, which was in the order of 100 μmol CO2 (mg chl)−1h−1.
In our MC-56 liquid medium these protoplasts regenerated cell walls within 72 h and a few divided.  相似文献   

13.
The permeability of rye leaf protoplasts to glycerol was determined using 1,3-14C glycerol and liquid scintillation spectrometry. Estimates were 1.0×10−8 m s−1 at 0°C and 4.1×10−8 m s−1 at 22 and 31°C. The activation energy for glycerol permeability was 32.8 kJ/mol. The effect of electroporation on glycerol uptake was also explored. Treatments were performed with a field strength of 100 V/cm and an exponential decay constant of 5.8 ms. At 22 °C, electroporation affected the rate and extent of glycerol permeation, causing an increase in the intercept of the glycerol uptake curve and a decrease in the slope. Electroporation had no significant effect on glycerol uptake when performed at 0°C, when the cells were electroporated at 0°C then warmed to 31 °C, or when the cells were electroporated at 22 °C then cooled to 0°C. The results at 22°C were consistent with an influx of glycerol during electroporation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Antifreeze proteins in winter rye leaves form oligomeric complexes   总被引:2,自引:3,他引:2       下载免费PDF全文
Yu XM  Griffith M 《Plant physiology》1999,119(4):1361-1370
Antifreeze proteins (AFPs) similar to three pathogenesis-related proteins, a glucanase-like protein (GLP), a chitinase-like protein (CLP), and a thaumatin-like protein (TLP), accumulate during cold acclimation in winter rye (Secale cereale) leaves, where they are thought to modify the growth of intercellular ice during freezing. The objective of this study was to characterize the rye AFPs in their native forms, and our results show that these proteins form oligomeric complexes in vivo. Nine proteins were separated by native-polyacrylamide gel electrophoresis from apoplastic extracts of cold-acclimated winter rye leaves. Seven of these proteins exhibited multiple polypeptides when denatured and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After isolation of the individual proteins, six were shown by immunoblotting to contain various combinations of GLP, CLP, and TLP in addition to other unidentified proteins. Antisera produced against individual cold-induced winter rye GLP, CLP, and TLP all dramatically inhibited glucanase activity in apoplastic extracts from cold-acclimated winter rye leaves, and each antiserum precipitated all three proteins. These results indicate that each of the polypeptides may be exposed on the surface of the protein complexes. By forming oligomeric complexes, AFPs may form larger surfaces to interact with ice, or they may simply increase the mass of the protein bound to ice. In either case, the complexes of AFPs may inhibit ice growth and recrystallization more effectively than the individual polypeptides.  相似文献   

15.

The purpose of this research was to establish the nature and extent of the influence of microwaves and extrusion on the content of anti-nutritional substances of winter rye grain. There was performed two-factor laboratory experiment with the treatment of winter rye grain by electromagnetic waves of super-high frequency (microwave) on a LG MS-2042G installation and one-factor laboratory experiment with grain treatment using a MKP-30-500 extruder. Depending on the power and duration of the microwave treatment, the content of water-soluble pentosans decreased by 0.04–0.44% and the kinematic viscosity of the aqueous extract—by 2.4 times. As a result of extrusion processing, the content of water-soluble pentosans in the winter rye grain decreased by 1.34 times, the kinematic viscosity of the aqueous extract—by 2.42 times. For all the years of the research, extrusion has led to a certain decrease in starch in winter rye grain. During a 3-year period the original grain of winter rye contained on average 59.9% of starch. After extrusion, the value of this indicator decreased by 2.0% amounting to 57.9%. During the extrusion process, starch is partially hydrolyzed to form intermediate carbohydrates-dextrins and then glucose. Our research has shown an increase in the content of soluble carbohydrates in extruded rye grain. During a 3-year period, the content of soluble carbohydrates in grain increased on average from 31.45 to 51.36%, i.e. by 19.91%. Treatment by microwaves and extrusion are effective ways to reduce the anti-nutritional substances of winter rye grain and significantly increase the proportion of rye grain in the diet of farm animals.

  相似文献   

16.

Key message

Rye genetic resources provide a valuable source of new alleles for the improvement of frost tolerance in rye breeding programs.

Abstract

Frost tolerance is a must-have trait for winter cereal production in northern and continental cropping areas. Genetic resources should harbor promising alleles for the improvement of frost tolerance of winter rye elite lines. For frost tolerance breeding, the identification of quantitative trait loci (QTL) and the choice of optimum genome-based selection methods are essential. We identified genomic regions involved in frost tolerance of winter rye by QTL mapping in a biparental population derived from a highly frost tolerant selection from the Canadian cultivar Puma and the European elite line Lo157. Lines per se and their testcrosses were phenotyped in a controlled freeze test and in multi-location field trials in Russia and Canada. Three QTL on chromosomes 4R, 5R, and 7R were consistently detected across environments. The QTL on 5R is congruent with the genomic region harboring the Frost resistance locus 2 (Fr2) in Triticeae. The Puma allele at the FrR2 locus was found to significantly increase frost tolerance. A comparison of predictive ability obtained from the QTL-based model with different whole-genome prediction models revealed that besides a few large, also small QTL effects contribute to the genomic variance of frost tolerance in rye. Genomic prediction models assigning a high weight to the FrR2 locus allow increasing the selection intensity for frost tolerance by genome-based pre-selection of promising candidates.
  相似文献   

17.
The interrelationship of growth and frost tolerance in winter rye   总被引:9,自引:0,他引:9  
The reduction in growth of winter cereals that occurs in the fall is thought to be required for the development of frost resistance. In the present study, the interrelationship of freezing tolerance and growth was examined by raising winter rye ( Secale cereale cv. Puma) plants at 20/16°C (day/night) and at 5/3°C under 8-, 16- and 24-h daylengths to vary growth rates and frost tolerance. Temperature and irradiance were quantified as thermal time, photothermal time and photosynthetic photon flux and examined by multiple linear regression in order to determine their effects on growth and frost tolerance of rye shoots. At low temperature, both growth and frost tolerance were markedly influenced by daylength and irradiance. Plants grown at 5/3°C with a short daylength accumulated shoot dry weight and increased frost tolerance at a greater rate per unit photothermal time or photon flux than plants grown at longer daylengths. Moreover, 5/3°C plants grown with a 16-h day grew more slowly and were less frost tolerant than plants grown with a 24-h day. We conclude that the interrelationship between growth and frost tolerance is a quantitative one. Frost tolerance is induced only by low temperature, but the development of forst tolerance is dependent upon both irradiance, which affects the amount of photoassimilate available, and daylength, which may affect the partitioning of photoassimilates between growth and frost tolerance.  相似文献   

18.
Freezing injury and root development in winter cereals   总被引:7,自引:5,他引:2       下载免费PDF全文
Upon exposure to 2°C, the leaves and crowns of rye (Secale cereale L. cv `Puma') and wheat (Triticum aestivum L. cv `Norstar' and `Cappelle') increased in cold hardiness, whereas little change in root cold hardiness was observed. Both root and shoot growth were severely reduced in cold-hardened Norstar wheat plants frozen to −11°C or lower and transplanted to soil. In contrast, shoot growth of plants grown in a nutrient agar medium and subjected to the same hardening and freezing conditions was not affected by freezing temperatures of −20°C while root growth was reduced at −15°C. Thus, it was apparent that lack of root development limited the ability of plants to survive freezing under natural conditions.

Generally, the temperatures at which 50% of the plants were killed as determined by the conductivity method were lower than those obtained by regrowth. A simple explanation for this difference is that the majority of cells in the crown are still alive while a small portion of the cells which are critical for regrowth are injured or killed.

Suspension cultures of Norstar wheat grown in B-5 liquid medium supplemented with 3 milligrams per liter of 2,4-dichlorophenoxyacetic acid could be cold hardened to the same levels as soil growth plants. These cultures produce roots when transferred to the same growth medium supplemented with a low rate of 2,4-dichlorophenoxyacetic acid (<1 milligram per liter). When frozen to −15°C regrowth of cultures was 50% of the control, whereas the percentage of calli with root development was reduced 50% in cultures frozen to −11°C. These results suggest that freezing affects root morphogenesis rather than just killing the cells responsible for root regeneration.

  相似文献   

19.
The ability of the actinomycetes and coryneform bacteria isolated from the root tissues of winter rye to produce auxin in a liquid culture was studied. The isolates of coryneform bacteria produced indolyl-3-acetic acid (IAA) into the medium in the amount of 9.0–95.0 μg/ml and the isolates of actinomycetes in the amount of 39.5–83.0 μg/ml. The maximal IAA accumulation in culture liquid of actinomycetes coincided, in general, with the beginning of the stationary growth phase. The dependences of IAA synthesis by actino-mycetes on the composition and pH of nutrient medium, tryptophan concentration, and aeration conditions were determined. Biological activity of the bacterial IAA was assessed. Treatment of winter rye seeds with coryneform auxin-producing bacteria increased the germination capacity and enhanced an intensive seedling growth in vitro.  相似文献   

20.
Summary Apoplastic antifreeze proteins (AFPs) accumulate in winter rye (Secale cereale L. cv. Musketeer) leaves during cold acclimation. Two of the rye AFPs with molecular masses of 32 and 35 kDa are similar in their amino acid sequences and epitopes to -1, 3-endoglucanase. Localization of these AFPs, which we refer to as glucanase-like proteins (GLPs), was carried out with antiserum raised against the 32 kDa AFP. Specimens from leaves and roots of non-acclimated (NA) plants and cold acclimated (CA) plants were prepared by freeze-substitution for high resolution immunoelectron microscopy. In CA leaves, high levels of GLPs were observed in cell walls of mesophyll cells adjacent to intercellular spaces and in secondary thickenings of xylem vessels. Taken together with the absence of GLPs in vacuoles, these results confirm the apoplastic accumulation of AFPs in CA winter rye. Within the cells of CA leaves, GLPs were localized in cisternae of the rough endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which indicates that GLPs are secreted via an exocytic bulk-flow pathway. The occurrence of high levels of GLPs in CA leaves, their low presence in NA leaves and the lack of GLPs in roots all suggest that there is a correlation between increased accumulation of GLPs and increased freezing tolerance of these plant materials. Furthermore, the localization of GLPs in the immediate vicinity of pathways for free water within the tissues supports the view that these proteins have an important role in the crystallization and/or recrystallization of water when the leaves of CA winter rye are exposed to freezing temperatures.Abbreviations AFP antifreeze protein - BSA bovine serum albumin - CA cold acclimated - GAR goat antirabbit antiserum conjugated with colloidal gold - GLP glucanase-like protein - NA non-acclimated - PBS phosphate buffered saline - PR pathogenesis related  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号