首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electron microscopic analysis of the DNA sequence organization in the soybean genome is reported. This analysis employed the gene 32 proteinethidium bromide spreading technique, a procedure which produces striking contrast between double and single-stranded DNA regions. To investigate the arrangement of repetitive sequences differing in genomic frequency, three kinetic fractions of 5 kb DNA fragments were isolated by reassociation and hydroxyapatite chromatography. Renatured structures in each fraction were then visualized in the electron microscope. The majority of repeated sequences, irrespective of frequency, were shown to be relatively non-divergent, to exceed 1.5 kbp in length (number-average), and to be organized primarily into long regularly repeating tandem or clustered arrays. Duplex regions >5 kbp were commonly visualized. A small fraction of low frequency repeats (<100 copies per genome), however, was observed to have a distinctly different form of arrangement. These repeats averaged 0.2 kbp in length, contained divergent sequences, and were contiguous to single copy DNA sequences having an average length of 1.15 kbp. Repeats which flanked a given single copy sequence did not appear to be homologous. Neither short clustered permuted repeats nor interspersion of repeats which differed significantly in reiteration frequency were found to be major features of soybean genome organization.  相似文献   

2.
3.
Tek AL  Song J  Macas J  Jiang J 《Genetics》2005,171(3):1231-1238
Highly repetitive satellite DNA sequences are main components of heterochromatin in higher eukaryotic genomes. It is well known that satellite repeats can expand and contract dramatically, which may result in significant genome size variation among genetically related species. The origin of satellite repeats, however, is elusive. Here we report a satellite repeat, Sobo, from a diploid potato species, Solanum bulbocastanum. The Sobo repeat is mapped to a single location in the pericentromeric region of chromosome 7. This single Sobo locus spans approximately 360 kb of a 4.7-kb monomer. Sequence analysis revealed that the major part of the Sobo monomer shares significant sequence similarity with the long terminal repeats (LTRs) of a retrotransposon. The Sobo repeat was not detected in other Solanum species and is absent in some S. bulbocastanum accessions. Sobo monomers are highly homogenized and share >99% sequence identity. These results suggest that the Sobo repeat is a recently emerged satellite and possibly originated by a sudden amplification of a genomic region including the LTR of a retrotransposon and its flanking genomic sequences.  相似文献   

4.
5.
6.
The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time.  相似文献   

7.
8.
9.
Summary Genes for the major storage protein of potato, patatin, have been mapped genetically and physically in both the potato and tomato genomes. In potato, all patatin genes detected by the cDNA clone pGM01 map to a single locus at the end of the long arm of chromosome 8. By means of pulsed field gel electrophoresis (PFGE) it was possible further to delimit this locus, containing 10–15 copies of the gene, to a maximum size of 1.4 million base pairs. Hybridizations with class-specific clones suggest that the locus is at least partially divided into domains containing the two major types of patatin genes, class I and II. In tomato, patatin-homologous sequences were found to reside at the orthologous locus at the end of chromosome 8. The approximately three copies in tomato were localized by PFGE to a single fragment of 300 kilobases. Whereas the class II-specific 5 promoter sequences reside in tomato at the same locus as the coding sequences, the single class I-specific copy of the 5 promoter sequences was localized on chromosome 3 with no coding sequence attached to it. A clone from this chromosome 3 locus of tomato was isolated and by restriction fragment length polymorphism mapping it could be further shown that a similar class I-specific sequence also exists on chromosome 3 of potato. As in tomato, this copy on chromosome 3 is not linked to a coding sequence for patatin. The results are discussed with respect to genome evolution and PFGE analysis of complex gene families.  相似文献   

10.
11.
12.
W Hu  M C Timmermans  J Messing 《Genetics》1998,150(3):1229-1237
A new allele of the 27-kD zein locus in maize has been generated by interchromosomal recombination between chromosomes of two different inbred lines. A continuous patch of at least 11,817 bp of inbred W64A, containing the previously characterized Ra allele of the 27-kD zein gene, has been inserted into the genome of A188 by a single crossover. While both junction sequences are conserved, sequences of the two homologs between these junctions differ considerably. W64A contains the 7313-bp-long retrotransposon, Zeon-1. A188 contains a second copy of the 27-kD zein gene and a 2-kb repetitive element. Therefore, recombination results in a 7.3-kb insertion and a 14-kb deletion compared to the original S+A188 allele. If nonpairing sequences are looped out, 206 single base changes, frequently clustered, are present. The structure of this allele may explain how a recently discovered example of somatic recombination occurred in an A188/W64A hybrid. This would indicate that despite these sequence differences, pairing between these alleles could occur early during plant development. Therefore, such a somatically derived chimeric chromosome can also be heritable and give rise to new alleles.  相似文献   

13.
In planta the enzymatic activity of apoplastic and vacuolar invertases is controlled by inhibitory proteins. Although these invertase inhibitors (apoplastic and vacuolar forms) have been implicated as contributing to resistance to cold-induced sweetening (CIS) in tubers of potato (Solanum tuberosum L.), there is a lack of information on the structure and allelic diversity of the apoplastic invertase inhibitor genes. We have PCR-isolated and sequenced the alleles of the apoplastic invertase inhibitor gene (Stinh1) from three tetraploid potato genotypes: 1021/1 (a genotype with very high tolerance to CIS), 'Karaka' and 'Summer Delight' (two cultivars that are highly susceptible to CIS). In total, five alleles were identified in these genotypes, of which four (Stinh1-c, Stinh1-d, Stinh1-e, Stinh1-f) were novel. An analysis of allele diversity was conducted by incorporating previously published sequences of apoplastic invertase inhibitors from potato. Eight alleles were assessed for sequence polymorphism in the two exons and the single hypervariable intron. Contrary to the hypervariable intron, only 65 single nucleotide polymorphisms were observed in the exons, of which 42 confer amino acid substitutions. Phylogenetic analysis of amino acid sequences indicates that the alleles of the invertase inhibitor are highly conserved amongst members of the Solanaceae family.  相似文献   

14.
15.
Organization of the human cholesteryl ester transfer protein gene   总被引:17,自引:0,他引:17  
The plasma cholesteryl ester transfer protein (CETP) catalyzes the transfer of phospholipids and neutral lipids between the lipoproteins. Thus, this protein may be important in modulating lipoprotein levels in the plasma. We have determined the primary structure and organization of the human CETP gene. Southern blotting of cellular DNA indicated a single copy of the CETP gene exists per haploid genome. Analysis of three overlapping genomic clones showed that the gene spans approximately 25 kbp and contains 16 exons (size range 32-250 bp). Overall, the sequence and organization of the CETP gene do not resemble those of other lipid-metabolizing enzymes or apolipoproteins. However, comparison of the CETP sequence, one exon at a time, with the sequences in the sequence databases revealed a striking identity of a pentapeptide sequence (ValLeuThrLeuAla) within the hydrophobic core of the signal sequences of human CETP, apolipoproteins A-IV and A-I, and lipoprotein lipase. This pentapeptide sequence was not found in the signal sequences of other proteins, suggesting that it may mediate a specialized function related to lipid metabolism or transport.  相似文献   

16.
17.
Editing is a general event in plant mitochondrial messenger RNAs, but has never been detected in a plant mitochondrial transfer RNA (tRNA). We demonstrate here the occurrence of a tRNA editing event in higher plant mitochondria: in both bean and potato, the C encoded at position 4 in the mitochondrial tRNA(Phe)(GAA) gene is converted into a U in the mature tRNA. This nucleotide change corrects the mismatched C4-A69 base-pair which appears when folding the gene sequence into the cloverleaf structure and it is consistent with the fact that C to U transitions constitute the common editing events affecting plant mitochondrial messenger RNAs. The tRNA(Phe)(GAA) gene is located upstream of the single copy tRNA(Pro)(UGG) gene in both the potato and the bean mitochondrial DNAs. The sequences of potato and bean tRNA(Pro)(UGG) genes are colinear with the sequence of the mature bean mitochondrial tRNA(Pro)(UGG), demonstrating that this tRNA is not edited. A single copy tRNA(Ser)(GCU) gene was found upstream of the tRNA(Phe) gene in the potato mitochondrial DNA. A U6-U67 mismatched base-pair appears in the cloverleaf folding of this gene and is maintained in the mature potato mitochondrial tRNA(Ser)(GCU), which argues in favour of the hypothesis that the editing system of plant mitochondria can only perform C to U or occasionally U to C changes.  相似文献   

18.
Sequence organization of the soybean genome   总被引:9,自引:0,他引:9  
The total complexity of one constituent soybean (Glycine max) genome is estimated to be 1.29 . 10(9) nucleotide pairs, as determined by analysis of the reassociation kinetics of sheared (0.47 kilobase) DNA. Single copy sequences are estimated to represent from 53 to 64% of the genome by analysis of hydroxyapatite binding of repetitive DNA as a function of fragment length. From 65 to 70% of these single copy sequences have a short period interspersion with 1.11--1.36 kilobase lengths alternating with 0.3--0.4 kilobase repetitive sequence elements. The repetitive sequences of soybean DNA are interspersed both among themselves and among single copy regions of the genome.  相似文献   

19.
Sequence characterization of the genomic region of sorghum yellow seed 1 shows the presence of two genes that are arranged in a head to tail orientation. The two duplicated gene copies, y1 and y2 are separated by a 9.084 kbp intergenic region, which is largely composed of highly repetitive sequences. The y1 is the functional copy, while the y2 may represent a pseudogene; there are several sequence indels and rearrangements within the putative coding region of y2. The y1 gene encodes a R2R3 type of Myb domain protein that regulates the expression of chalcone synthase, chalcone isomerase and dihydroflavonol reductase genes required for the biosynthesis of 3-deoxyflavonoids. Expression of y1 can be observed throughout the plant and it represents a combination of expression patterns produced by different alleles of the maize p1. Comparative sequence analysis within the coding regions and flanking sequences of y1, y2 and their maize and teosinte orthologs show local rearrangements and insertions that may have created modified regulatory regions. These micro-colinearity modifications possibly are responsible for differential patterns of expression in maize and sorghum floral and vegetative tissues. Phylogenetic analysis indicates that sorghum y1 and y2 sequences may have arisen by gene duplication mechanisms and represent an evolutionarily parallel event to the duplication of maize p2 and p1 genes.  相似文献   

20.
We have generated a mouse x human heterohybridoma that contains a single copy of chromosome 14 and, thus, a haploid set of Ig VH genes. This cell line was used to investigate the germ-line content and nucleotide sequences of members of the VH4 gene family in a polymerase chain reaction-based approach. The analysis of 58 full-length sequences revealed the presence of 12 different germ-line VH4 genes, each of which is potentially functional. These germ-line VH4 genes were compared with the nucleotide sequences of published VH4 genes. Three VH4 genes were 100% identical to previously published sequences and belong to a group of VH4 genes that are strongly conserved and highly prevalent in the human population. Three VH4 genes in our collection displayed greater than 99.3% sequence identity with reported germ-line VH4 sequences and likely represent allelic counterparts of these genes. Six genes displayed less than 97.2% sequence identity with published VH4 genes and were identified as novel members of the human VH4 gene family or more distantly related alleles of known VH4 genes. Collectively, these data suggest that, overall, the human VH4 gene family may be more diverse than hitherto assumed, whereas a number of individual members are nonpolymorphic and extremely well conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号