首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The monoclonal antibodies JIM 5 (against unesterified pectin), JIM 7 (against methyl esterified pectin), MAC 207 (against arabinogalactan proteins, AGPs), and JIM 8 (against a subset of AGPs) were utilized singly or in combinations for immunogold labelling of germinated pollen grains and pollen tubes ofNicotiana tabacum. Pectins were localized in the inline of pollen grain, unesterified pectin being more abundant than the esterified one. AGPs were co-localized with pectin in the inline, but were present preferably close to the plasma membrane. In pollen tubes, AGPs, unesterified and esterified pectins were co-localized in the outer and middle layers of the cell wall. The density of the epitopes was not uniform along the length of the pollen tube, but showed alterations. In the pollen tube tip wall esterified pectin was abundantly present, but not AGPs. In the cytoplasm esterified pectin and AGPs were detected in Golgi derived vesicles, indicating their role in the pathway of the cell wall precursors. In the cell wall of generative cell only AGPs, but no pectins were localized. The co-localization of pectins and AGPs in the cell wall of pollen grain and pollen tube might play an important role, not only in maintenance of the cell shape, but also in cell-cell interaction during pollen tube growth and development.Abbreviations AGP arabinogalactan protein - BSA bovine serum albumin - GA glutaraldehyde - MAb monoclonal antibody - NGS normal goat serum - PFA paraformaldehyde  相似文献   

2.
Abreu I  Oliveira M 《Protoplasma》2004,224(1-2):123-128
Summary. The cell wall composition of germinating pollen grains of Actinidia deliciosa was studied by immunolocalization with monoclonal antibodies against arabinogalactan proteins (AGPs) and pectins. In ungerminated pollen, the JIM8 epitope (against a subset of AGPs) was located in the intine and in the cytoplasm, while the MAC207 epitope (against AGPs) was only located in the exine. After germination, the JIM8 and MAC 207 epitopes were located in the cytoplasm and in the pollen tube wall. The Yariv reagent that binds to AGPs was added to the germination medium inducing a reduction or inhibition in pollen germination. This indicates that AGPs are present in the growing pollen tube and play an important role in pollen germination. To identify the nature of the pectins found in pollen grains and tubes, four monoclonal antibodies were used. The JIM5 epitope (against unesterified pectins) was located in the intine, more intensely in the pore region, and along the pollen tube wall, and the JIM7 epitope (against methyl-esterified pectins) was also observed in the cytoplasm. After germination, the JIM5 epitope was located in the pollen tube wall; although, the tube tip was not labelled. The JIM7 epitope was located in the entire pollen tube wall. LM5 (against galactans) showed a labelling pattern similar to that of JIM5 and the pattern of LM6 (against arabinans) was similar to that of JIM7. Pectins show different distribution patterns when the degree of esterification is considered. Pollen tube wall pectins are less esterified than those of the pollen tube tip. The association of AGPs with pectins in the cell wall of the pollen grain and the pollen tube may play an important role in the maintenance of cell shape during pollen growth and development.Correspondence and reprints: Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.  相似文献   

3.
4.
5.
6.
In plant cells, microtubule-based motor proteins have not been characterized to the same degree as in animal cells; therefore, it is not yet clear whether the movement of organelles and vesicles is also dependent on the microtubular cytoskeleton. In this work the kinesinimmunoreactive homologue from pollen tubes of Nicotiana tabacum L. has been purified and biochemically characterized. The protein preparation mainly contained a polypeptide with a relative molecular weight of approx. 100 kDa. This polypeptide bound to animal microtubules in an ATP-dependent manner and it further copurified with an ATPase activity fourfold-stimulated by the presence of microtubules. In addition, the sedimentation coefficient (approx. 9S) was similar to those previously shown for other kinesins. Immunofluorescence analyses revealed a partial co-distribution of the protein with microtubules in the pollen tube. These data clearly indicate that several properties of the kinesin-immunoreactive homologue are similar to those of kinesin proteins, and suggest that molecular mechanisms analogous to those of animal cells may drive the microtubule-based motility of organelles and vesicles in plants.Abbreviations AE-LPLC anion-exchange low-pressure liquid chromatography - AMPPNP 5-adenylylimidodiphosphate - PKH pollen kinesin homologue - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

7.
S. M. Read  A. E. Clarke  A. Bacic 《Protoplasma》1993,174(3-4):101-115
Summary Production of sperm cells by division of the generative cell occurs during growth ofNicotiana (tobacco) pollen tubes through the sporophytic tissue of the style, and is associated with transition to the second phase of pollen-tube growth. WhenNicotiana pollen tubes are grown in liquid culture, the extent of generative-nucleus division and the timing of this division depend on the chemical composition of the medium. Addition of reduced forms of nitrogen, either as mixed amino-acids (0.03% w/v of an acid hydrolysate of casein) or as 1 mM ammonium chloride, induces division of the generative nucleus in over 90% of the tubes; 3 mM calcium nitrate does not stimulate division. Individual amino-acids differ in their ability to induce this division. Contaminants in some batches of poly(ethylene glycol), which is a major component of pollen-tube growth media, inhibit generative-nucleus division; this inhibition is greater in the absence of nitrogen, which increases the observed nitrogen-dependence of division. Reduced forms of nitrogen are also required for growth of pollen tubes after division, when callose plugs are deposited. In the absence of nitrogen, growth continues until the point where sperm cell production would normally occur, then ceases. Addition of amino-acids or ammonium chloride thus allows cultured pollen tubes ofNicotiana to progress to their second phase of growth. WhenNicotiana pollen is germinated in a complete culture medium at 25–26°C, sperm nuclei are first observed in the growing tubes after about 10 h, and by about 16 h most of the tubes have undergone division; at lower temperatures, division is delayed. The timing of division also varies between species ofNicotiana, but division occurs similarly in self-compatible and self-incompatible species. Anaphase in an individual pollen tube is calculated to take less than 4 min. The resultant sperm nuclei usually trail behind the vegetative nucleus, but a variety of arrangements of the three nuclei are observed.Abbreviations DAPI 4,6-diamidino-2-phenylindole - PEG poly(ethylene glycol) - OG ordinary grade of PEG - SP Specially Purified for Biochemistry grade of PEG  相似文献   

8.
Pollen-tube cell walls are unusual in that they are composed almost entirely of callose, a (1,3)--linked glucan with a few 6-linked branches. Regulation of callose synthesis in pollen tubes is under developmental control, and this contrasts with the deposition of callose in the walls of somatic plant cells which generally occurs only in response to wounding or stress. The callose synthase (uridine-diphosphate glucose: 1,3--d-glucan 3--d-glucosyl transferase, EC 2.4.1.34) activities of membrane preparations from cultured pollen tubes and suspension-cultured cells of Nicotiana alata Link et Otto (ornamental tobacco) exhibited different kinetic and regulatory properties. Callose synthesis by membrane preparations from pollen tubes was not stimulated by Ca2+ or other divalent cations, and exhibited Michaelis-Menten kinetics only between 0.25 mM and 6 mM uridine-diphosphate glucose (K m 1.5–2.5 mM); it was activated by -glucosides and compatible detergents. In contrast, callose synthesis by membrane preparations from suspension-cultured cells was dependent on Ca2+, and in the presence of 2 mM Ca2+ exhibited Michaelis-Menten kinetics above 0.1 mM uridine-diphosphate glucose (K m 0.45 mM); it also required a -glucoside and low levels of compatible detergent for full activity, but was rapidly inactivated at higher levels of detergent. Callose synthase activity in pollen-tube membranes increased ten fold after treatment of the membranes with trypsin in the presence of detergent, with no changes in cofactor requirements. No increase in callose synthase activity, however, was observed when membranes from suspension-cultured cells were treated with trypsin. The insoluble polymeric product of the pollen-tube enzyme was characterised as a linear (1,3)--d-glucan with no 6-linked glucosyl branches, and the same product was synthesised irrespective of the assay conditions employed.Abbreviations Ara l-arabinose - CHAPS 3-[(3-cholamidopropyl)dimethylammonia]-1-propane sulphonic acid - DAP diphenylamine-aniline-phosphoric acid stain - Gal d-galactose - Glc d-glucose - Man d-mannose - Mes 2-(N-morpholino)ethane sulphonic acid - Rha d-rhamnose - Rib d-ribose - TFA trifluoroacetic acid - UDPGlc uridine-diphosphate glucose - Xyl d-xylose This research was supported by funds from a Special Research Centre of the Australian Research Council. H.S. was funded by a Melbourne University Postgraduate Scholarship and an Overseas Postgraduate Research Studentship; S.M.R. was supported by a Queen Elizabeth II Research Fellowship. We thank Bruce McGinness and Susan Mau for greenhouse assistance, and Deborah Delmer and Adrienne Clarke for advice and encouragement throughout this project.  相似文献   

9.
Qin Y  Chen D  Zhao J 《Protoplasma》2007,231(1-2):43-53
Summary. Western blot analysis indicated the presence of two epitopes recognized by the anti-arabinogalactan protein antibodies JIM13 and LM2 and the absence of the JIM4 epitope in mature tobacco anthers. Immunoenzyme localization of arabinogalactan proteins (AGPs) with JIM13 showed that AGPs accumulate mainly at the early stages of anther development. AGP content and distribution were also investigated at the ultrastructural level in pollen tubes grown in vivo and in vitro. Abundant AGPs were present in the transmitting tissue of styles, and the AGP content of the extracellular matrix changed during pollen tube growth. In pollen tubes, immunogold particles were mainly distributed in the cell wall and cytoplasm, especially around the peripheral region of the generative-cell wall. β-D-Glucosyl Yariv reagent, which specifically binds to AGPs, caused slow growth of pollen tubes and reduced immunogold labeling of AGPs with JIM13 in vitro. These data suggest that AGPs participate in male gametogenesis and pollen tube growth and may be important surface molecules in generative and sperm cells. Correspondence and reprints: Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China.  相似文献   

10.
Ultrastructural studies of the pollen tubes of Nicotiana sylvestris grown in the pistil revealed an extensive development of plasmatubules formed by evaginations of the plasma membrane. The plasmatubules occurred as twisted tubular structures in the periplasmic space along the tube wall and, in cross section, exhibited circular profiles with an outer diameter of 28±4 nm. They were also seen in deep, pocket-like invaginations of the plasma membrane and in this case the profiles had an outer diameter of 34±8 nm. In the pocket-like invaginations they were partially branched and often closely packed to form groups with obvious patterns. The enlargement of the plasma-membrane area resulting from plasmatubules formed along the tube wall was about six-to tenfold. Pollen tubes grown in vitro exhibited poorly developed plasmatubules. It is suggested that the large extension of the plasma membrane could enhance the uptake of nutrients, and thus might be responsible for the comparatively fast growth of pollen tubes in the pistil. Moreover, it is also assumed that the turnover rate of the Golgi apparatus must be higher in pollen tubes growing in vivo than in vitro, in order to provide a sufficient amount of membrane for the formation of the plasma membrane with its tubular modifications.  相似文献   

11.
M. Kroh  B. Knuiman 《Planta》1982,154(3):241-250
Tobacco pollen tubes grown in vitro and from pollinated tobacco styles were treated by chemical solvents to remove one or more of the following polysaccharides from the tube walls: pectin (ethylenediamine tetraacetic acid); hemicellulose (alkali); callose (alkali; potassium hypochlorite); cellulose (cuprammonium); and all polysaccharides with exception of cellulose (H2O2/glacial acetic acid). Both the inner tube wall, which we had regarded as the secondary wall, and the plugs contained, in addition to callose, microfibrils of cellulose and non-cellulosic microfibrils that had pectin-like properties. When using the expressions callosic or callose layer and callose plugs in reference to pollen tubes, one should realize that they do not imply the exclusive presence of callose in the inner tube wall layer and its localized thickenings.Extended version of a contribution (poster) presented at the International Symposium Advances in Plant Cytoembryology in Lublin, Poland, in June 1980 Dedicated to Professor J. Straub (Köln-Vogelsang) on his 70th birthday in 1981  相似文献   

12.
M. Kroh  B. Knuiman 《Planta》1985,166(3):287-299
Exocytosis occurring during deposition of secondary wall material was studied by freeze-fracturing ultrarapidly frozen non-plasmolyzed and plasmolyzed tobacco pollen tubes. The secondary wall of tobacco pollen tubes shows a random orientation of microfibrils. This was observed directly on fractures through the tube wall and indirectly as imprints of microfibrils on fracture faces of the plasma membrane of non-plasmolyzed tubes. About half of the plasmatic fracture faces from non-plasmolyzed and plasmolyzed pollen tubes carried hexagonal arrays of intramembraneous particles in between randomly distributed particles. Deposition of secondary wall material was often accompanied by an undulated plasma membrane and the presence of membrane-bound vesicles in invaginations of the plasma membrane, between the plasma membrane and secondary wall and-especially in plasmolyzed tubes-within the secondary wall of tube flanks and wall cap. The findings are discussed in connection with published schemes of membrane behaviour during exocytosis.Abbreviations EF extraplasmatic fracture face - IMP(s) intramembraneous particle(s) - PF plasmatic fracture face Extended version of a contribution (poster) presented at the 8th Int. Symp. on Sexual Reproduction in Seed Plants, Ferns and Mosses, Wageningen, The Netherlands, August 1984 Dedicated to Prof. Dr. H.F. Linskens (Nijmegen) on the occasion of his 65th birthday in 1986  相似文献   

13.
Summary In the pollen and pollen tube of higher plants, the distribution of the microtubular cytoskeleton has been extensively studied. Even though the pattern of microtubules is known, one of the most remarkable deficiencies is the absence of data on the localization of microtubule-nucleation sites in the pollen tubes. In order to get insights about the localization of centrosome-like structures in the pollen tube ofNicotiana tabacum L., we have used the monoclonal antibody 6C6 to search for pericentriolar antigen(s). The antibody was initially raised against a component of animal centrosomes and has been already employed to locate centrosomal structures in other plant cell types. By immunoblotting analysis, a polypeptide of Mr 77,000 was identified specifically in the membrane-associated protein fraction of the pollen tube, and is absent from the soluble protein pool. Immunofluorescence observations have shown the polypeptide to be located in the apical part of the pollen tube (about 40–50 m from the tip) in association with the cortical area. A purified plasma membrane fraction from the growing pollen tubes has been obtained, using H+-ATPase activity as an organelle marker. The plasma membrane fraction was shown to be enriched in the Mr 77,000 polypeptide, which can be extracted from membranes by treatment with the detergent CHAPS at a concentration of 0.5%. These data open new research perspectives on the localization and analysis of putative cortical microtubule nucleation sites in the pollen tube.Abbreviations ATP adenosine-5-triphosphate - CHAPS 3-[(3-cholamidopropyl)-dimethylammonio]-propanesulfonate - DTT dithiothreitol - EDTA ethylenediaminetetracetic acid - EGTA ethylene glycolbis(-amino-ethyl ether) N,N,N,N-tetraacetic acid - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulphonic acid - MES 2-(N-morpholino)ethane sulphonic acid - MT microtubule - SDS-PAGE sodium-dodecyl-sulphate polyacrylamide gel electrophoresis - PMSF phenylmethyl-sulphonyl-fluoride - TAME tosyl-arginine-methylester  相似文献   

14.
The dynamics of actin-filament organization in pollen-tube subprotoplasts ofNicotiana tabacum L. cv. Samsun during regeneration and outgrowth was examined using phalloidin probes and a non-fixation method. A succession of actin arrays was examined during subprotoplast regeneration that strongly resembled the actin dynamics described for developing microspores by Van Lammeren et al. (1989, Planta178, 531–539) and activated pollen by Tiwari and Polito (1988, Protoplasma147, 5–15). At the end of the succession the actin filaments often became extended between two opposite polar foci. The ordering of the cortical actin filaments reflected a polarity in the subprotoplasts which determined the plane of outgrowth. The site of outgrowth was often marked by a ring of actin filaments. As growth proceeded and tube-like structures were formed, the arrangement of cortical actin filaments was found to be transverse to the elongation axis. Since the patterns of actin distribution were identical in both caryoplasts and cytoplasts, it was concluded that the pollen-tube cytoplasm has the intrinsic capacity of reorganizing actin filaments and imposing polarity on the spherical subprotoplasts.  相似文献   

15.
Summary. Rapid diffusion of allergenic proteins in isotonic media has been demonstrated for different pollen grains. Upon contact with stigmatic secretion or with the mucosa of sensitive individuals, pollen grains absorb water and release soluble low-molecular-weight proteins, these proteins enter in the secretory pathway in order to arrive at the cell surface. In this study we located allergenic proteins in mature and hydrated-activated pollen grains of Parietaria judaica L. (Urticaceae) and studied the diffusion of these proteins during the first 20 min of the hydration and activation processes. A combination of transmission electron microscopy and immunocytochemical methods was used to locate these proteins in mature pollen and in pollen grains after different periods of hydration and activation processes. Activated proteins reacting with antibodies in human serum from allergic patients were found in the cytoplasm, wall, and exudates from the pollen grains. The allergenic component of these pollen grains changes according to the pollen state; the presence of these proteins in the exine, the cytoplasm, and especially in the intine and in the material exuded from the pollen grains, is significant in the hydrated-activated studied times, whereas this presence is not significant in mature pollen grains. The rapid activation and release of allergenic proteins of P. judaica pollen appears to be the main cause of the allergenic activity of these pollen grains. Correspondence and reprints: Department of Plant Biology, Faculty of Biology, University of León, Campus de Vegazana, 24071 León, Spain.  相似文献   

16.
Regulation of expression of a 69-kDa glycoprotein which occurs abundantly in tobacco (Nicotiana tabacum L.) pollen tubes but is absent in ungerminated pollen has been studied in vitro by means of a coupled translation/glycosylation system with RNA isolated from various stages of pollen development. Pollen mRNA could be translated in a rabbit reticulocyte lysate and the products glycosylated with canine pancreatic microsomal membranes. The electrophoretic pattern of translation products obtained with pollen-tube RNA showed a prominent polypeptide with an apparent molecular mass of 58 kDa. In the presence of the canine pancreatic microsomal membranes this polypeptide was glycosylated, producing the 69-kDa glycoprotein. The presence of mRNA encoding the 58-kDa precursor polypeptide was also demonstrated in ungerminated pollen and in young mid-binucleate pollen isolated from anthers. Initiation of synthesis of the 69-kDa glycoprotein at the onset of pollen germination thus occurs through unmasking of the mRNA transcribed during pollen differentiation and stored during pollen maturation and dormancy in an inactive state.Abbreviation pI isoelectric point  相似文献   

17.
Cell walls isolated from pollen of Nicotiana alata germinated in vitro contain glucose and arabinose as the predominant monosaccharides. Methylation analysis and cytochemical studies are consistent with the major polysaccharides being a (13)--D-glucan (callose) and an arabinan together with small amounts of cellulose. The cell walls contain 2.8% uronic acids. Alcian blue stains the pollen-tube walls intensely at the tip, indicating that acidic polysaccharides are concentrated in the tip. Synthetic aniline-blue fluorochrome is specific primarily for (13)--D-glucans and stains the pollen-tube walls, except at the tip. Protein (1.5%), containing hydroxyproline (2.4%), is present in the cell wall.  相似文献   

18.
Summary A method was worked out using trifluoromethanesulfonic acid (TFMS) as a reagent to split the covalently bound proteins, which are NaCl insoluble, from pollen tube walls of Lilium longiflorum, leaving the peptide bonds essentially intact. After electrophoretic separation, comparisons were made among these proteins from pollen grains and pollen tubes grown in vitro and in styles after self- and cross-pollination. It was found that a) the patterns of covalently bound wall proteins were different between tubes grown in vitro and in vivo; b) fewer bands were found in covalently bound wall proteins than that in noncovalently bound proteins; c) the bands remained almost the same no matter whether the tubes had been cross pollinated or self pollinated, indicating that while the noncovalently bound proteins were involved in incompatibility as shown in the previous paper, the covalently bound proteins may only serve as a structural component, having little to do with incompatibility.  相似文献   

19.
Lenartowska M  Michalska A 《Planta》2008,228(5):891-896
The actin cytoskeleton plays a crucial role in pollen tube growth. In elongating pollen tubes the organization and arrangement of actin filaments (AFs) differs between the shank and apical region. However, the orientation of AFs in pollen tubes has not yet been successfully demonstrated. In the present work we have used myosin II subfragment 1 (S1) decoration to determine the polarity of AFs in pollen tubes. Electron microscopy studies revealed that in the shank of the tube bundles of AFs exhibit uniform polarity with those close to the cell cortex having their barbed ends oriented towards the tip of the pollen tube while those in the cell center have their barbed ends oriented toward the base of the tube. At the subapex, some AFs are organized in closely packed and longitudinally oriented bundles and some form curved bundles adjacent to the cell membrane. In contrast, few AFs are dispersed with random orientation in the extreme apex of the pollen tube. Our results confirm that the direction of cytoplasmic streaming within pollen tubes is determined by the polarity of AFs in the bundles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号