首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We adopted a genetic approach to test the importance of edited GluR2-free, Ca(2+)-permeable, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in the pathophysiology of experimental autoimmune encephalomyelitis, an inflammatory demyelinative disorder resembling multiple sclerosis. Initial studies showed that oligodendroglial lineage cells from mice lacking functional copies of the gene encoding the GluR3 AMPA receptor subunit (Gria3) had a diminished capacity to assemble edited GluR2-free AMPA receptors, and were resistant to excitotoxicity in vitro. Neurological deficits and spinal cord demyelination elicited by immunization with myelin oligodendrocyte glycoprotein peptide were substantially milder in these Gria3 mutant mice than in their wild-type littermates. These results support the hypothesis that oligodendroglial excitotoxicity mediated by AMPA receptors that do not contain edited GluR2 subunits contributes to demyelination in experimental autoimmune encephalomyelitis, and suggest that inhibiting these Ca(2+)-permeable AMPA receptors would be therapeutic in multiple sclerosis.  相似文献   

2.
3.
Motoneurons have been shown to be particularly sensitive to Ca2+-dependent glutamate excitotoxicity, mediated via AMPA receptors (AMPARs). To determine the molecular basis for this susceptibility we have used immunocytochemistry, RT-PCR, and electrophysiology to profile AMPARs on embryonic day 14.5 rat motoneurons. Motoneurons show detectable AMPAR-mediated calcium permeability in vitro and in vivo as determined by cobalt uptake and electrophysiology. Motoneurons express all four AMPAR subunit mRNAs, with glutamate receptor (GluR) 2 being the most abundant (63.9+/-4.8%). GluR2 is present almost exclusively in the edited form, and electrophysiology confirms that most AMPARs present are calcium-impermeant. However, the kainate current in motoneurons was blocked an average of 32.0% by Joro spider toxin, indicating that a subset of the AM PARs is Ca2+-permeable. Therefore, heterogeneity of AMPARs, rather than the absence of GluR2 or the presence of unedited GluR2, explains AMPAR-mediated Ca2+ permeability. The relative levels of flip/flop isoforms of each subunit were also examined by semiquantitative PCR. Both isoforms were present, but the relative proportion varied for each subunit, and the flip isoform predominated. Thus, our data show that despite high levels of edited GluR2 mRNA, some AMPARs are Ca2+-permeable, and this subset of AMPARs can account for the AMPAR-mediated Ca2+ inflow inferred from cobalt uptake and electrophysiology studies.  相似文献   

4.
5.
6.
Buntinx  M.  Vanderlocht  J.  Hellings  N.  Vandenabeele  F.  Lambrichts  I.  Raus  J.  Ameloot  M.  Stinissen  P.  Steels  P. 《Brain Cell Biology》2003,32(1):25-38
Oligodendrocytes, the myelin-forming cells of the central nervous system, are the target of pathogenic immune responses in multiple sclerosis. Primary cultures of human oligodendrocytes have been used to unravel the cellular and molecular mechanisms of immune-mediated injury of oligodendrocytes. However, these studies are hampered by the limited availability of viable human brain tissue. The present study was aimed at comparing the morphological and biochemical characteristics of the human oligodendroglial cell lines HOG, MO3.13 and KG-1C. We have determined oligodendrocyte-associated features of these lines and analyzed the degree to which they can be used as a model of human oligodendrocytes arrested at specific developmental stages. The oligodendroglial cell lines all exhibited markers of immature oligodendrocytes, such as CNPase and GalC, but not the astrocytic marker GFAP. Differentiation could be induced in HOG and MO3.13 cells, as was seen through a decrease in proliferation, an increase in process extension without formation of myelin sheets and up-regulation of genes associated with mature oligodendrocytes such as MBP and MOG. Microarray analysis revealed the expression of MAG, MOBP and OMG genes in HOG cells. The KG-1C cells displayed poor growth characteristics in the recommended conditions. In conclusion, our data show that the oligodendroglial cell lines HOG and MO3.13 can be used as a model of human oligodendrocytes ‘arrested’ in an immature developmental stage. Culturing in appropriate medium can induce further differentiation of these cells. These cell lines can therefore be applied as a model to study immune-mediated injury of oligodendrocytes in relation to disease.  相似文献   

7.
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2(+)-permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca(2+)-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca(2+)-permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons.  相似文献   

8.
The in vivo binding pattern of the lectin Griffonia simplicifolia II (GSLII) was evaluated in sections of adult cat optic nerve following reports that it is a marker for oligodendrocytes in adult rodent CNS and that it may also be an oligodendroglial lineage marker. Following as closely as possible the immunocytochemical methodology employed in these reports, staining for GSLII was incorporated into sets of consecutive one micron thick sections comprising known cell-type specific reference markers backed up by electron microscopy. With this correlative protocol both lectin positive and lectin negative cells could be reliably identified. The material examined included normal control tissue and tissue containing previously studied demyelinating lesions of various ages in which oligodendrocyte progenitors and precursors have been characterized. GSLII was found to stain not only mature oligodendrocytes in adult cat optic nerve but also activated microglia, macrophages, polymorphonuclear leucocytes and other haematogenous cells. Lectin positivity was not found in oligodendroglial precursors, endothelial cells, astrocytes or ramified microglia. This study emphasises that care needs to be taken before assigning lineage marker status to individual lectins or antibodies.  相似文献   

9.
Glioblastoma multiforme is the most undifferentiated type of brain tumor, and its prognosis is extremely poor. Glioblastoma cells exhibit highly migratory and invasive behavior, which makes surgical intervention unsuccessful. Here, we showed that glioblastoma cells express Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors assembled from the GluR1 and/or GluR4 subunits, and that their conversion to Ca(2+)-impermeable receptors by adenovirus-mediated transfer of the GluR2 cDNA inhibited cell locomotion and induced apoptosis. In contrast, overexpression of Ca(2+)-permeable AMPA receptors facilitated migration and proliferation of the tumor cells. These findings indicate that Ca(2+)-permeable AMPA receptors have crucial roles in growth of glioblastoma. Blockage of these Ca(2+)-permeable receptors may be a useful therapeutic strategy for the prevention of glioblastoma invasion.  相似文献   

10.
Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death.  相似文献   

11.
12.
M. Berry  P. Hubbard  A. M. Butt 《Brain Cell Biology》2002,31(6-7):457 ppl=-467
We present evidence that NG2+ glia are an integral part of an oligodendrocyte/synantocyte (OS) lineage stream the progenitors of which begin to produce both glial phenotypes at about birth. The NG2 CSPG is differentially distributed within the OS lineage, being expressed in progenitors and synantocytes but not in oligodendrocytes. All cells in the OS lineage, except the primordial stem cells, express O4. The oligodendrocyte line reacts with CD9, but synantocytes are CD9?. Nonetheless, synantocytes are morphologically complex and specialised glia which contact axolemma in myelinated fibres at nodes of Ranvier and synaptic terminals, and form >99% of all NG2+ glia in the adult CNS. Thus, the other NG2+ phenotype, the adult oligodendrocyte progenitor cell (AOPC), constitutes a small population of <1% of all NG2+ glia in the mature CNS. AOPC are a heterogeneous set of cells probably originating from multiple sources which, by definition, produce oligodendrocytes in the adult to replace loss after trauma, demyelination and normal ‘wear and tear’. The definitive functions of synantocytes remain undefined.  相似文献   

13.
The mammalian CNS contains a ubiquitous population of glial progenitors known as NG2+ cells that have the ability to develop into oligodendrocytes and undergo dramatic changes in response to injury and demyelination. Although it has been reported that NG2+ cells are multipotent, their fate in health and disease remains controversial. Here, we generated PDGFαR-CreER transgenic mice and followed their fate in vivo in the developing and adult CNS. These studies revealed that NG2+ cells in the postnatal CNS generate myelinating oligodendrocytes, but not astrocytes or neurons. In regions of neurodegeneration in the spinal cord of ALS mice, NG2+ cells exhibited enhanced proliferation and accelerated differentiation into oligodendrocytes but remained committed to the oligodendrocyte lineage. These results indicate that NG2+ cells in the normal CNS are oligodendrocyte precursors with restricted lineage potential and that cell loss and gliosis are not sufficient to alter the lineage potential of these progenitors.  相似文献   

14.
An overactivation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptors has been implicated in the pathophysiology of oligodendrocyte damage in demyelinating disorders of the CNS. We decided to examine the effect of testosterone on excitotoxic death of oligodendrocytes because a gender difference exists in the incidence and disease course of multiple sclerosis. Short-term pure cultures of oligodendrocytes (4 days in vitro) were exposed to a brief pulse with kainate or AMPA + cyclothiazide for the induction of excitotoxicity. Exposure to testosterone enantate was slightly toxic per se and amplified both AMPA and kainate toxicity. Testosterone treatment induced all gene targets of p53, and amplified the induction of these genes induced by kainate. The effect of testosterone was mediated by the activation of androgen receptors and was resistant to the aromatase inhibitors, dl-aminoglutethimide and 4-hydroxyandrost-4-ene-3,17-dione. Testosterone treatment also potentiated the stimulation of 45Ca2+ influx induced by AMPA + cyclothiazide or kainate without changing the expression of the glutamate receptor (GluR) 1, -2/3, and -4 subunits of AMPA receptors or the GluR6/7 subunits of kainate receptors. We conclude that testosterone amplifies excitotoxic damage of oligodendrocytes acting at an early step of the death cascade triggered by AMPA/kainate receptors.  相似文献   

15.
The transgenic plp-GFP mouse line expressing the green fluorescent protein (GFP) driven by the mouse myelin proteolipid protein (plp) gene promoter has been previously used to study the contribution of the plp lineage to oligodendrocyte development in the embryonic brain. Here, we show that the GFP fluorescence reflects the developmental expression of proteolipid protein during the postnatal development until adulthood in brain slices and in primary cultures of plp-GFP+ cells derived from postnatal animals. In the adult brain, plp-GFP-expressing cells are mature oligodendrocytes but not oligodendroglial progenitors. In the model of focal demyelination induced by lysolecithin (LPC) in the corpus callosum of adult plp-GFP animals, we observed an up-regulation of the morphogen Sonic Hedgehog (Shh) in the LPC-induced lesion but not in the control animals. Moreover, we show that the adenovirus-mediated transfer of Shh in the lesion results in the attenuation of the demyelination extent as evidenced by GFP fluorescence analysis in Shh-treated and control animals. Altogether these data show how plp-GFP fluorescence can be monitored to follow the oligodendrocyte lineage during demyelination and identify Shh morphogen as an important factor during repair.  相似文献   

16.
Oligodendroglia differentiate asynchronously in the developing central nervous system, passing through a series of stages identified by the sequential expression of specific differentiation antigens, culminating in the formation of the myelin sheath. In the work presented here, oligodendrocyte progenitors at a temporally narrow and well-defined phenotypic stage of development have been isolated in high purity and yield directly from postnatal rat telencephalon. This stage is identified by the expression of the O4 antigen, the earliest recognized surface marker specific for the oligodendroglial lineage, but the absence of the differentiation marker galactosylcerebroside (GalC). These O4+ GalC- progenitors first appear at birth (10(5)/telencephalon), 2-3 days before O4+ GalC+ oligodendrocytes. The work presented here demonstrates that a major subpopulation of O4+ GalC- progenitors (80%), which we have termed 'proligodendrocytes', is fully committed to terminal oligodendrocyte differentiation. A relatively small, maximal set of nutritional supplements are sufficient for proligodendrocytes to carry out the myelinogenic cascade of differentiated gene expression in a temporally normal manner, in quantitatively significant amounts, in normal ratios of myelin protein isoforms, and in a regulated relationship to the inclusion of myelin-specific products into myelin-like membrane sheets. An important corollary is that this step of myelinogenesis does not require contact with other cell types, in particular neurones and astrocytes, nor does it require unknown growth factors unique to these cell types. Additionally under these conditions, there exists a developmentally quiescent subpopulation (20%) of O4+ GalC- cells that may have significance for understanding the progenitors previously described in adult brain and suggested to be instrumental in remyelination under pathological conditions.  相似文献   

17.
Most studies on the origin of oligodendrocyte lineage have been performed in the spinal cord. By contrast, molecular mechanisms that regulate the appearance of the oligodendroglial lineage in the brain have not yet attracted much attention. We provide evidence for three distinct sources of oligodendrocytes in the mouse telencephalon. In addition to two subpallial ventricular foci, the anterior entopeduncular area and the medial ganglionic eminence, the rostral telencephalon also gives rise to oligodendrocytes. We show that oligodendrocytes in the olfactory bulb are generated within the rostral pallium from ventricular progenitors characterized by the expression of PLP: We provide evidence that these Plp oligodendrocyte progenitors do not depend on signal transduction mediated by platelet-derived growth factor receptors (PDGFRs), and therefore propose that they belong to a different lineage than the PDGFRalpha-expressing progenitors. Moreover, induction of oligodendrocytes in the telencephalon is dependent on sonic hedgehog signaling, as in the spinal cord. In all these telencephalic ventricular territories, oligodendrocyte progenitors were detected at about the same developmental stage as in the spinal cord. However, both in vivo and in vitro, the differentiation into O4-positive pre-oligodendrocytes was postponed by 4-5 days in the telencephalon in comparison with the spinal cord. This delay between determination and differentiation appears to be intrinsic to telencephalic oligodendrocytes, as it was not shortened by diffusible or cell-cell contact factors present in the spinal cord.  相似文献   

18.
p38 Mitogen-activated protein kinase (p38 MAPK) is expressed in the oligodendrocyte lineage, and its activity has been implicated in the proliferation and transition of early progenitors into late progenitors. Although p38 MAPK expression has been found in the myelin sheath, however, its role in mature oligodendrocytes remains unknown. In the present study, in order to address the role of p38 MAPK in mature oligodendrocytes, selective inhibitors of p38 MAPK, SB202190, and SB203580 were added to primary cultures of mature oligodendrocytes. After 24h of exposure to the inhibitors, the appearance, and number of A2B5-positive progenitors were unchanged. However, the 2',3'-cyclic nucleotide-3'-phosphohydrolase-positive mature oligodendrocytes disappeared, and the numbers of living cells decreased in comparison to the control cells treated with SB202474, a negative analog of SB203580. Increases in the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive nuclei and in the activity of caspase-3/7 were detected 16 h after exposure to the inhibitors, thus causing the mature oligodendrocytes to die due to apoptosis. Similar results were obtained using a differentiated rat oligodendrocyte precursor cell (OPC) line, central glia-4 (CG-4). These findings indicate that p38 MAPK is vital for mature oligodendrocyte survival.  相似文献   

19.
Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques.  相似文献   

20.
In addition to well-known N-methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity, recent studies suggest that non-NMDA type ionotropic glutamate receptors are also important mediators of excitotoxic neuronal death, and that their functional expression can be regulated by the cellular environment. In this study, we used cerebellar granule cells (CGCs) in culture to investigate kainate (KA)-induced excitotoxicity. Although previous reports indicated that KA induces apoptosis of CGCs in culture, no KA-induced excitotoxic cell death was observed in CGCs treated with KA when cells were maintained in high potassium media (24 mm K+). In contrast, when mature CGCs were shifted into low potassium media (3 mm K+), KA produced significant excitotoxicity. In electrophysiological studies, the KA-induced inward current density was significantly elevated in CGCs shifted into low K+ media compared with those maintained in high K+ media. Non-desensitizing aspects of KA currents observed in this study suggest that these responses were mediated by AMPA rather than KA receptors. In immunofluorescence studies, the surface expression of GluR1 subunits increased when mature CGCs were shifted into a low K+ environment. This study suggests that KA-induced excitotoxicity in mature CGCs is dependent upon the extracellular potassium concentration, which modulates functional expression and excitability of AMPA/KA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号