首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ogawa H  Haga T  Toyoshima C 《FEBS letters》2000,471(1):99-102
MJ0968 has been proposed to be an ancestor of P-type ATPase, because its primary structure is highly homologous to that of the core catalytic domain of P-type ATPase. However it completely lacks amino acid sequences that possibly constitute transmembrane domains. To examine if MJ0968 is indeed a P-type ATPase, it was overexpressed in Escherichia coli and purified. It did show ATPase activity, autophosphorylation and inhibition by vanadate. All these properties support the idea that MJ0968 is indeed a soluble P-type ATPase.  相似文献   

2.
A novel ATPase was solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, with low ionic strength buffer containing EDTA. The enzyme was purified to homogeneity by hydrophobic chromatography and gel filtration. The molecular weight of the purified enzyme was estimated to be 360,000. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate revealed that it consisted of three kinds of subunits, alpha, beta, and gamma, whose molecular weights were approximately 69,000, 54,000, and 28,000, respectively, and the most probable subunit stoichiometry was alpha 3 beta 3 gamma 1. The purified ATPase hydrolyzed ATP, GTP, ITP, and CTP but not UTP, ADP, AMP, or p-nitrophenylphosphate. The enzyme was highly heat stable and showed an optimal temperature of 85 degrees C. It showed an optimal pH of around 5, very little activity at neutral pH, and another small activity peak at pH 8.5. The ATPase activity was significantly stimulated by bisulfite and bicarbonate ions, the optimal pH remaining unchanged. The Lineweaver-Burk plot was linear, and the Km for ATP and the Vmax were estimated to be 1.6 mM and 13 mumol Pi.mg.-1.min-1, respectively, at pH 5.2 at 60 degrees C in the presence of bisulfite. The chemical modification reagent, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, caused inactivation of the ATPase activity although the enzyme was not inhibited by N,N'-dicyclohexylcarbodiimide, N-ethyl-maleimide, azide or vanadate. These results suggest that the ATPase purified from membranes of S. acidocaldarius resembles other archaebacterial ATPases, although a counterpart of the gamma subunit has not been found in the latter. The relationship of the S. acidocaldarius ATPase to other ion-transporting ATPases, such as F0F1 type or E1E2 type ATPases, was discussed.  相似文献   

3.
BACKGROUND: D-Serine is a co-agonist of the N-methyl-D-aspartate subtype of glutamate receptors, a major neurotransmitter receptor family in mammalian nervous systems. D-Serine is converted from L-serine, 90% of which is the product of the enzyme phosphoserine phosphatase (PSP). PSP from M. jannaschii (MJ) shares significant sequence homology with human PSP. PSPs and P-type ATPases are members of the haloacid dehalogenase (HAD)-like hydrolase family, and all members share three conserved sequence motifs. PSP and P-type ATPases utilize a common mechanism that involves Mg(2+)-dependent phosphorylation and autodephosphorylation at an aspartyl side chain in the active site. The strong resemblance in sequence and mechanism implies structural similarity among these enzymes. RESULTS: The PSP crystal structure resembles the NAD(P) binding Rossmann fold with a large insertion of a four-helix-bundle domain and a beta hairpin. Three known conserved sequence motifs are arranged next to each other in space and outline the active site. A phosphate and a magnesium ion are bound to the active site. The active site is within a closed environment between the core alpha/beta domain and the four-helix-bundle domain. CONCLUSIONS: The crystal structure of MJ PSP was determined at 1.8 A resolution. Critical residues were assigned based on the active site structure and ligand binding geometry. The PSP structure is in a closed conformation that may resemble the phosphoserine bound state or the state after autodephosphorylation. Compared to a P-type ATPase (Ca(2+)-ATPase) structure, which is in an open state, this PSP structure appears also to be a good model for the closed conformation of P-type ATPase.  相似文献   

4.
In most bacterial cell types studied, low intracellular free calcium is maintained by a variety of secondary exchangers which utilize transmembrane ion gradients. Prokaryotic calcium ATPases appear to be extremely uncommon, and none have been reported in Gram-negative organisms. We demonstrate ATP-dependent calcium uptake in everted membrane vesicles of Flavobacterium odoratum, a common Gram-negative soil and water bacterium. Calcium is transported with an apparent initial rate of 10 nmol/min mg of protein. It is inhibited by 20 microM orthovanadate, a specific P-type ATPase inhibitor, but significantly, it is unaffected by the addition of N-ethylmaleimide, N,N-dicyclohexylcarbodiimide, valinomycin, or nigericin. Because the Ca(2+)-ATPase makes up a high proportion of the total ATPase activity it is easily detected by a soluble ATP hydrolysis assay, with an initial rate for calcium-dependent ATPase activity in vesicles of 25-40 nmol/min.mg at pH 7.8 and 25 degrees C. The calcium-dependent activity is preferentially solubilized by the detergent C12E8 and can be precipitated at 55-80% ammonium sulfate in a fraction free of other contaminating ATPase activities. This partially purified fraction is enriched 15-fold and demonstrates an apparent Km for calcium of 2 microM, and for ATP of 130 microM. The IC50 for vanadate is 1.6 microM. These values are similar to those obtained for the eukaryotic sarcoplasmic reticulum calcium ATPase. The enzyme is rapidly phosphorylated by [gamma-32P]ATP in a calcium-dependent, vanadate-inhibitable manner. The phosphorylated species migrates with an apparent molecular mass of 60 kDa by NaDodSO4-polyacrylamide gel electrophoresis, and the phosphoryl group is sensitive to alkaline conditions, a characteristic of the acylphosphate linkage found in ATPases. These data demonstrate that the majority of calcium transport in F. odoratum is facilitated by a P-type ATPase.  相似文献   

5.
Isothiocyanates are recognized inhibitors acting on ATP-binding sites of P-type ATPases. Detailed studies with modification of proteins in molecules of purified ATPases by fluorescein isothiocyanate (FITC) and consequent tryptic hydrolysis followed by isolation and sequencing of the respective peptide fragments revealed FITC bound to a lysine residue. This residue was then indicated to be essential for the interaction of ATP with the P-type ATPases. Nevertheless, upon an exchange by site directed mutagenesis of lysine, believed to be essential, the expected total inhibition of ATPase activity was missing. In addition, in the case of the plasma membrane Ca2+-ATPase, the residual activity still remained sensitive to FITC. It was attempted to explain the latter finding by hypothetical existence of some other lysine residue essential for the ATPase activity. On the contrary, in our previous studies we have shown that, based on the reactivity of isothiocyanates, the primary target of FITC in P-type ATPases has to be the SH group of a cysteine residue. However, later on, in altered conditions during trypsinolysis and sequencing, FITC may become transferred from its original site of interaction to a lysine residue and this may lead to final identification of the label on a false place. The present study represents all attempt of elucidating the controversy whether it is lysine or cysteine that represents the FITC-sensitive group truly responsible for the recognition by the active site of P-type ATPases of ATP and its binding.  相似文献   

6.
P-type ATPases are ubiquitously abundant primary ion pumps, which are capable of transporting cations across the cell membrane at the expense of ATP. Since these ions comprise a large variety of vital biochemical functions, nature has developed rather sophisticated transport machineries in all kingdoms of life. Due to the importance of these enzymes, representatives of both eu- and prokaryotic as well as archaeal P-type ATPases have been studied intensively, resulting in detailed structural and functional information on their mode of action. During catalysis, P-type ATPases cycle between the so-called E1 and E2 states, each of which comprising different structural properties together with different binding affinities for both ATP and the transport substrate. Crucial for catalysis is the reversible phosphorylation of a conserved aspartate, which is the main trigger for the conformational changes within the protein. In contrast to the well-studied and closely related eukaryotic P-type ATPases, much less is known about their homologues in bacteria. Whereas in Eukarya there is predominantly only one subunit, which builds up the transport system, in bacteria there are multiple polypeptides involved in the formation of the active enzyme. Such a rather unusual prokaryotic P-type ATPase is the KdpFABC complex of the enterobacterium Escherichia coli, which serves as a highly specific K(+) transporter. A unique feature of this member of P-type ATPases is that catalytic activity and substrate transport are located on two different polypeptides. This review compares generic features of P-type ATPases with the rather unique KdpFABC complex and gives a comprehensive overview of common principles of catalysis as well as of special aspects connected to distinct enzyme functions.  相似文献   

7.
P-type ATPases are ubiquitously abundant primary ion pumps, which are capable of transporting cations across the cell membrane at the expense of ATP. Since these ions comprise a large variety of vital biochemical functions, nature has developed rather sophisticated transport machineries in all kingdoms of life. Due to the importance of these enzymes, representatives of both eu- and prokaryotic as well as archaeal P-type ATPases have been studied intensively, resulting in detailed structural and functional information on their mode of action. During catalysis, P-type ATPases cycle between the so-called E1 and E2 states, each of which comprising different structural properties together with different binding affinities for both ATP and the transport substrate. Crucial for catalysis is the reversible phosphorylation of a conserved aspartate, which is the main trigger for the conformational changes within the protein. In contrast to the well-studied and closely related eukaryotic P-type ATPases, much less is known about their homologues in Bacteria. Whereas in Eukarya there is predominantly only one subunit, which builds up the transport system, in Bacteria there are multiple polypeptides involved in the formation of the active enzyme. Such a rather unusal prokaryotic P-type ATPase is the KdpFABC complex of the enterobacterium Escherichia coli, which serves as a highly specific K+ transporter. A unique feature of this member of P-type ATPases is that catalytic activity and substrate transport are located on two different polypeptides. This review compares generic features of P-type ATPases with the rather unique KdpFABC complex and gives a comprehensive overview of common principles of catalysis as well as of special aspects connected to distinct enzyme functions.  相似文献   

8.
Vanadate-sensitive ATPase (115 kDa molecular weight) in adrenal chromaffin granules is an intrinsic membrane enzyme with its catalytic site located at the outer surface of the granules. Upon incubation with [gamma-32P]ATP, the purified ATPase formed an alkaline-labile phosphoenzyme intermediate, which was inhibited by vanadate but not by Na+ or K+. Ratio of ATPase or phosphatase activity and formation of phosphoenzyme intermediate was constant during purification after the first glycerol density gradient centrifugation. Phosphatidylserine specifically activated the enzyme about three-fold by increasing the Vmax value without changing the Km for ATP. Other phospholipids, including phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, as well as lysophospholipids and detergents, had no effect. These results indicated that the vanadate-sensitive ATPase belongs to the P-type ATPases, which differ from known cation-translocating P-type ATPases.  相似文献   

9.
An azide- and vanadate-insensitive, N-ethylmaleimide-sensitive ATPase has been partially purified from a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. The properties of the membrane-bound ATPase activity were identical to those of the ATPase activity of highly purified goblet cell apical membranes (Wieczorek, H., Wolfersberger, M. G., Cioffi, M., and Harvey, W. R. (1986) Biochim. Biophys. Acta 857, 271-281). 90% of the azide- and vanadate-insensitive ATPase activity was solubilized by C12E10, leaving 90% of the contaminating azide-sensitive mitochondrial ATPase activity in the pellet after centrifugation at 100,000 x g for 1 h. After discontinuous sucrose gradient centrifugation of the supernatant at 220,000 x g for 1 h nearly all of the azide- and vanadate-insensitive ATPase activity was found in the 30% sucrose fraction without contaminating azide- or vanadate-sensitive ATPase activity. Two prominent bands with relative molecular masses (Mr) of about 600,000 and 900,000, both displaying azide-insensitive and N-ethylmaleimide-sensitive ATPase activity, were found in native microgradient polyacrylamide gel electrophoresis of the 30% sucrose fraction. The two bands could not be separated by anion exchange chromatography. Denaturation of both bands resulted in the same polypeptide pattern (five major bands with Mr 70,000, 57,000, 46,000, 29,000 and 17,000) in sodium dodecylsulfate-polyacrylamide gel electrophoresis, indicating that they represented oligomers of the same protein unit. Substrate and inhibitor specificities of the partially purified ATPase were similar to those of the membrane-bound ATPase activity, whereas salt selectivity differed partly. Altogether, structural and functional properties of the ATPase strongly resemble those of vacuolar-type ATPases.  相似文献   

10.
11.
P-type ATPases convert chemical energy into electrochemical gradients that are used to energize secondary active transport. Analysis of the structure and function of P-type ATPases has been limited by the lack of active recombinant ATPases in quantities suitable for crystallographic studies aiming at solving their three-dimensional structure. We have expressed Arabidopsis thaliana plasma membrane H+-ATPase isoform AHA2, equipped with a His(6)-tag, in the yeast Saccharomyces cerevisiae. The H+-ATPase could be purified both in the presence and in the absence of regulatory 14-3-3 protein depending on the presence of the diterpene fusicoccin which specifically induces formation of the H+-ATPase/14-3-3 protein complex. Amino acid analysis of the purified complex suggested a stoichiometry of two 14-3-3 proteins per H+-ATPase polypeptide. The purified H(+)-ATPase readily formed two-dimensional crystals following reconstitution into lipid vesicles. Electron cryo-microscopy of the crystals yielded a projection map at approximately 8 A resolution, the p22(1)2(1) symmetry of which suggests a dimeric protein complex. Three distinct regions of density of approximately equal size are apparent and may reflect different domains in individual molecules of AHA2.  相似文献   

12.
We investigated a new archaeal member of the AAA+ protein family (ATPases associated with various cellular activities) which is found in all methanogenic archaea and the sulphate-reducer Archaeoglobus fulgidus. These proteins cluster to COG1223 predicted to form a subgroup of the AAA+ ATPases. The gene from A. fulgidus codes for a protein of 40 kDa monomeric molecular weight, which we overexpressed in Escherichia coli and purified to homogeneity. The protein forms ring-shaped complexes with a diameter of 125A as determined by electron microscopy. Using sedimentation equilibrium analysis we demonstrate that it assembles into hexamers over a wide concentration range both in presence and absence of ATP. As suggested by homology to other members of the AAA+ family, the complex binds and hydrolyzes ATP. Michaelis-Menten analysis revealed a k(cat) of 118 min(-1) and a K(M) of 1.4 mM at 78 degrees C. This hyperthermophilic archaeal ATPase is stable to 86 degrees C and the ATPase activity is maximal at this temperature. The protein is most homologous to the AAA-domain of FtsH from bacteria, while the N-terminal domain shows predicted structural homology to members of the CDC48 family of AAA proteins. Possible roles of this new AAA+ protein are discussed.  相似文献   

13.
P-type ATPases are ubiquitously abundant enzymes involved in active transport of charged residues across biological membranes. The KdpB subunit of the prokaryotic Kdp-ATPase (KdpFABC complex) shares characteristic regions of homology with class II-IV P-type ATPases and has been shown previously to be misgrouped as a class IA P-type ATPase. Here, we present the NMR structure of the AMP-PNP-bound nucleotide binding domain KdpBN of the Escherichia coli Kdp-ATPase at high resolution. The aromatic moiety of the nucleotide is clipped into the binding pocket by Phe(377) and Lys(395) via a pi-pi stacking and a cation-pi interaction, respectively. Charged residues at the outer rim of the binding pocket (Arg(317), Arg(382), Asp(399), and Glu(348)) stabilize and direct the triphosphate group via electrostatic attraction and repulsion toward the phosphorylation domain. The nucleotide binding mode was corroborated by the replacement of critical residues. The conservative mutation F377Y produced a high residual nucleotide binding capacity, whereas replacement by alanine resulted in low nucleotide binding capacities and a considerable loss of ATPase activity. Similarly, mutation K395A resulted in loss of ATPase activity and nucleotide binding affinity, even though the protein was properly folded. We present a schematic model of the nucleotide binding mode that allows for both high selectivity and a low nucleotide binding constant, necessary for the fast and effective turnover rate realized in the reaction cycle of the Kdp-ATPase.  相似文献   

14.
Characterization and functional reconstitution of the multidrug transporter   总被引:2,自引:0,他引:2  
P-Glycoprotein, the multidrug transporter, is isolated from the plasma membrane of CHRC5 cells using a selective two-step detergent extraction procedure. The partially purified protein displays a high level of ATPase activity, which has a highK M for ATP, is stimulated by drugs, and can be distinguished from that of other membrane ATPases by its unique inhibition profile. Delipidation completely inactivates ATPase activity, which is restored by the addition of fluid lipid mixtures. P-Glycoprotein was reconstituted into lipid bilayers with retention of both drug transport and ATPase activity. Proteoliposomes containing P-glycoprotein display osmotically sensitive ATP-dependent accumulation of3H-colchicine in the vesicle lumen. Drug transport is active, generating a stable 5.6-fold concentration gradient, and can be blocked by compounds in the multidrug resistance spectrum. Reconstituted P-glycoprotein also exhibits a high level of ATPase activity which is further stimulated by various drugs. P-Glycoprotein therefore functions as an active drug transporter with constitutive ATPase activity.  相似文献   

15.
The thermophilic, sulfur metabolizing Archaeoglobus fulgidus contains two genes, AF0473 and AF0152, encoding for PIB-type heavy metal transport ATPases. In this study, we describe the cloning, heterologous expression, purification, and functional characterization of one of these ATPases, CopA (NCB accession number AAB90763), encoded by AF0473. CopA is active at high temperatures (75 degrees C; E(a) = 103 kJ/mol) and inactive at 37 degrees C. It is activated by Ag+ (ATPase V(max) = 14.82 micromol/mg/h) and to a lesser extent by Cu+ (ATPase V(max) = 3.66 micromol/mg/h). However, Cu+ interacts with the enzyme with higher apparent affinity (ATPase stimulation, Ag+ K(12) = 29.4 microm; Cu+ K(12) = 2.1 microm). This activation by Ag+ or Cu+ is dependent on the presence of millimolar amounts of cysteine. In the presence of ATP, these metals drive the formation of an acid-stable phosphoenzyme with apparent affinities similar to those observed in the ATPase activity determinations (Ag+, K(12) = 23.0 microm; Cu+, K(12) = 3.9 microm). However, comparable levels of phosphoenzyme are reached in the presence of both cations (Ag+, 1.40 nmol/mg; Cu+, 1.08 nmol/mg). The stimulation of phosphorylation by the cations suggests that CopA drives the outward movement of the metal. CopA presents additional functional characteristics similar to other P-type ATPases. ATP interacts with the enzyme with two apparent affinities (ATPase K(m) = 0.25 mm; phosphorylation K(m) = 4.81 microm), and the presence of vanadate leads to enzyme inactivation (IC(50) = 24 microm). This is the first Ag+/Cu+ -ATPase expressed and purified in a functional form. Thus, it provides a model for structure-functional studies of these transporters. Moreover, its characterization will also contribute to an understanding of thermophilic ion transporters.  相似文献   

16.
Cholinergic Synaptic Vesicles Contain a V-Type and a P-Type ATPase   总被引:6,自引:4,他引:2  
Fifty to eighty-five percent of the ATPase activity in different preparations of cholinergic synaptic vesicles isolated from Torpedo electric organ was half-inhibited by 7 microM vanadate. This activity is due to a recently purified phosphointermediate, or P-type, ATPase, Acetylcholine (ACh) active transport by the vesicles was stimulated about 35% by vanadate, demonstrating that the P-type enzyme is not the proton pump responsible for ACh active transport. Nearly all of the vesicle ATPase activity was inhibited by N-ethylmaleimide. The P-type ATPase could be protected from N-ethylmaleimide inactivation by vanadate, and subsequently reactivated by complexation of vanadate with deferoxamine. The inactivation-protection pattern suggests the presence of a vanadate-insensitive, N-ethylmaleimide-sensitive ATPase consistent with a vacuolar, or V-type, activity expected to drive ACh active transport. ACh active transport was half-inhibited by 5 microM N-ethylmaleimide, even in the presence of vanadate. The presence of a V-type ATPase was confirmed by Western blots using antisera raised against three separate subunits of chromaffin granule vacuolar ATPase I. Both ATPase activities, the P-type polypeptides, and the 38-kilodalton polypeptide of the V-type ATPase precisely copurify with the synaptic vesicles. Solubilization of synaptic vesicles in octaethyleneglycol dodecyl ether detergent results in several-fold stimulation of the P-type activity and inactivation of the V-type activity, thus explaining why the V-type activity was not detected previously during purification of the P-type ATPase. It is concluded that cholinergic vesicles contain a P-type ATPase of unknown function and a V-type ATPase which is the proton pump.  相似文献   

17.
18.
Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-terminal membrane-binding amphipathic helix attached to the main ATPase domain. In infected cells, 2C is involved in the formation of membrane vesicles, where it co-localizes with viral RNA replication complexes, but its precise role in virus replication has not been elucidated. We show here that deletion of the predicted N-terminal amphipathic helix enables overexpression in Escherichia coli of a highly soluble truncated protein, 2C(34–318), that has ATPase and RNA binding activity. ATPase activity was abrogated by point mutations in the Walker A (K116A) and B (D160A) motifs and Motif C (N207A) in the active site. Unliganded 2C(34–318) exhibits concentration-dependent self-association to yield oligomeric forms, the largest of which is tetrameric. Strikingly, in the presence of ATP and RNA, FMDV 2C(34–318) containing the N207A mutation, which binds but does not hydrolyze ATP, was found to oligomerize specifically into hexamers. Visualization of FMDV 2C-ATP-RNA complexes by negative stain electron microscopy revealed hexameric ring structures with 6-fold symmetry that are characteristic of AAA+ ATPases. ATPase assays performed by mixing purified active and inactive 2C(34–318) subunits revealed a coordinated mechanism of ATP hydrolysis. Our results provide new insights into the structure and mechanism of picornavirus 2C proteins that will facilitate new investigations of their roles in infection.  相似文献   

19.
Four chromatographically distinct DNA-dependent ATPases, B, C1, C2, and C3, have been partially purified from mouse FM3A cell extracts. These ATPases are distinguished from each other by their physical and enzymological properties. DNA-dependent ATPases B, C1, C2, and C3 have sedimentation coefficients in 250 mM KCl of 5.5, 5.3, 7.3, and 3.4 S, respectively. ATPases B, C2, and C3 hydrolyze dATP as efficiently as ATP, whereas C1 does not. ATPase B hydrolyzes other ribonucleoside triphosphates with relatively high efficiency as compared to the other three enzymes. ATPase C3 prefers poly[d(A-T)] to poly(dT) as cofactor, whereas the other three enzymes prefer poly(dT) to poly[d(A-T)]. Among the four ATPases, ATPase C3 has been highly purified and characterized in detail. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction of ATPase C3 showed two major bands corresponding to molecular weights of 66 000 and 63 000. The Km values of the enzyme for ATP and dATP are 0.53 and 0.86 mM, respectively. As cofactor, poly[d(A-T)] is the most effective among the DNAs tested. Heat-denatured DNA and native DNA are also effective but used with less efficiency. Almost no or very little activity has been detected with ribohomopolymers and oligonucleotides. The activity attained with poly(dT) and poly(dA) is 11 and 6% of that with heat-denatured DNA, respectively. When both polymers were added at a molar ratio 1 to 1, very high activity was obtained with these polymers. On the other hand, little activity was observed by the combination of noncomplementary homopolymers such as poly(dT) and poly(dG).  相似文献   

20.
Plasmid pl258 carries the cadA gene that confers resistance to cadmium, lead, and zinc. CadA catalyzes ATP-dependent cadmium efflux from cells of Staphylococcus aureus. It is a member of the superfamily of P-type ATPases and belongs to the subfamily of soft metal ion pumps. In this study the membrane topology of this P-type ATPase was determined by constructing fusions with the topological reporter genes phoA or lacZ. A series of 44 C-terminal truncated CadAs were fused with one or the other reporter gene, and the activity of each chimeric protein was determined. In addition, the location of the first transmembrane segment was determined by immunoblot analysis. The results are consistent with the pl258 CadA ATPase having eight transmembrane segments. The first 109 residues is a cytosolic domain that includes the Cys(X)2Cys motif that distinguishes soft metal ion-translocating P-type ATPases from their hard metal ion-translocating homologues. Another feature of soft metal ion P-type ATPases is the CysProCys motif, which is found in the sixth transmembrane segment of CadA. The phosphorylation site and ATP binding domain conserved in all P-type ATPases are situated within the large cytoplasmic loop between the sixth and seventh transmembrane segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号