共查询到4条相似文献,搜索用时 490 毫秒
1.
The thermodynamic treatment of the disproportionation reaction of adenosine 5′-diphosphate to adenosine 5′-triphosphate and adenosine 5′-monophosphate is discussed in terms of an equilibrium model which includes the effects of the multiplicity of ionic and metal bound species and the presence of long range electrostatic and short range repulsive interactions. Calculated quantities include equilibrium constants, enthalpies, heat capacities, entropies, and the stoichiometry of the overall reaction. The matter of how these calculations can be made self-consistent with respect to both calculated values of the ionic strength and the molality of the free magnesium ion is discussed. The thermodynamic data involving proton and magnesium-ion binding data for the nucleotides involved in this reaction have been evaluated. 相似文献
2.
The thermodynamics of the conversion of aqueous xylose to xylulose has been investigated using high-pressure liquid chromatography (HPLC) and microcalorimetry. The reaction was carried out in aqueous phosphate buffer over the pH range 6.8-7.4 using solubilized glucose isomerase with MgSO(4) as a cofactor. The temperature range over which this reaction was investigated was 298.15-342.15 K. A combined analysis of both the HPLC and microcalorimetric data leads to the following results at 298.15 K for the conversion process: DeltaG degrees = 4389 +/- 31 J mol(-1), DeltaH degrees = 16090 +/- 670 J mol(-1), and DeltaC(p) degrees = 40 +/- 23 J mol(-1) K(-1). The temperature dependence of the equilibrium constant for the reaction is expressed as R ln K = -4389/298.15 +16090[(1/298.15)-(1/T)]+40[(298.15/T)-1 + ln(T/298.15)]. Comparisons are made with literature data. 相似文献
3.
The thermodynamics of the conversion of aqueous fumarate to L-(-)-malate has been investigated using both heat conduction microcalorimetry and a gas chromatographic method for determining equilibrium constants. The reaction was carried out in aqueous Tris-HCl buffer over the pH range 6.3-8.0, the temperature range 25-47 degrees C, and at ionic strengths varying from 0.0005 to 0.62 mol kg-1. Measured enthalpies and equilibrium ratios have been adjusted to zero ionic strength and corrected for ionization effects to obtain the following standard state values for the conversion of aqueous fumarate 2- to malate 2- at 25 degrees C: K = 4.20 +/- 0.05, delta G degrees = -3557 +/- 30 J mol-1, delta H degrees = -15670 +/- 150 J mol-1, and delta C degrees p = -36 +/- J mol-1 K-1. Equations are given which allow one to calculate the combined effects of pH and temperature on equilibrium constants and enthalpies of this reaction. 相似文献
4.