首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content of an intrinsic ATPase inhibitor in mitochondria was determined by a radioimmunoassay procedure which showed the molar ratio of the inhibitor to ATPase to be 1:1. The ratio in submitochondrial particles, where half of the enzyme was activated, was the same as that of mitochondria, indicating that the inhibitor protein has affinity for the mitochondrial membrane as well as for F1-ATPase. The inhibitor protein could be removed from the mitochondrial membrane by incubation with 0.5 M Na2SO4 and concomitantly the enzyme was fully activated. The enzyme fully activated by the salt treatment was inactivated again by the externally added ATPase inhibitor in the presence of ATP and Mg2+. The enzyme-inhibitor complex (inactive) on the mitochondrial membrane was more stable than the solubilized enzyme-inhibitor complex but gradually dissociated in the absence of ATP and Mg2+. However, in mitochondria, the enzyme activity was inhibited even in the absence of the cofactors. A protein factor stabilizing the enzyme-inhibitor complex on the mitochondrial membrane was isolated from yeast mitochondria. This factor stabilized the inhibitor complex of membrane-bound ATPase while having no effect on that of purified F1-ATPase. It also efficiently facilitated the binding of the inhibitor to membrane-bound ATPase to form the complex, which reversibly dissociated at slightly alkaline pH.  相似文献   

2.
The extent of stimulation of the hydrolytic activity of mitochondrial ATPase by the reducing agent dithionite has been found to depend on substrate concentration both for the membrane bound enzyme and for the isolated and purified F1ATPase. The results suggest the existence of three catalytic sites differing in their standard reduction potential. The activating effect of free ATP on the hydrolytic activity of rat liver F1-ATPase has been found to be more pronounced on the reduced form of the enzyme. On the contrary, the inhibitory effect of ADP was higher on the oxidized form of F1-ATPase. Citrate has also been found to be an inhibitor of F1-ATPase; its effect was more pronounced on the reduced form of the enzyme, and exhibited a competitive pattern of inhibition with respect to free ATP. The results obtained have been interpreted in the sense that free ATP and ADP may be modifying the standard reduction potential of the enzyme, and suggest the existence of three independent redox cycles in ATPase governed by the exchange of ADP and Pi for the newly synthesized ATP.  相似文献   

3.
Novocaine segregation zones in frog's erythrocytes, isolated by differential centrifugation, were shown to be ATPase active. The enzyme displays half of its maximum activity at 0.18 Mm ATP concentration to be inhibited by high concentrations of ATP. ATPase is activated by both Mg2+ and Ca2+ (in a lesser degree), with the maximum activity being at pH 7.5. A 5 minutes heating without the substrate results in decreasing the enzyme activity at 30 degrees, and in the total inhibition at 50 degrees C. Along with ATP, the enzyme can hydrolyse GTP and, in a lesser degree, ADP and sodium pyrophosphate. The ATPase activity is not effected with oligomycin (0.5-1.5 mkg/ml) or ouabaine (0.1 mM). Oligomycin in concentration 5 micrograms/ml induced non-specific inhibition of ATPase. Uncouplers, like 2,4-dinitrophenol and carbonyl cyanid p-trifluorometoxyphenylhydrazone, stimulate the enzyme activity. The lack in the ATP-ase sensitivity to oligomycin (specific inhibitor of mitochondrial F1-ATPase) and ouabaine (specific inhibitor of Na+, K+-ATPase) may suggest that the ATPase activity of novocaine segregation zones in frog's erythrocytes is not associated with a random contamination with mitochondria or cytoplasmic membranes. The ATPase under study has much in common with the lysosomal +H-ATPase. The results obtained support a hypothesis that +H-ATPase may function as a course of protones for maintaining acidic medium in segregation zones and promote accumulation of weak bases by means of their protonation.  相似文献   

4.
There are at least four forms of DNA-dependent ATPase in mouse FM3A cells [Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., & Yamada, M. (1984) Biochemistry 23, 529-533]. One of these, ATPase B, has been purified and characterized in detail. During the purification of the enzyme, we encountered the difficulties that the enzyme could not be recovered well from the single-stranded DNA-cellulose column and that the enzyme activity was distributed very broadly. The problems were resolved by the addition of ATP in the elution buffer. The ATPase has a sedimentation coefficient of 5.5 S in both high salt and low salt. The enzyme hydrolyzes rNTPs and dATP, but ATP and dATP are preferred substrates. Adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), 5'-adenylyl methylenediphosphate (AMP-PCP), and 5'-adenylyl imidodiphosphate (AMP-PNP) inhibit the enzyme activity. The enzyme is insensitive to ouabain, oligomycin, novobiocin, and ethidium bromide. A divalent cation (Mg2+ congruent to Mn2+ greater than Ca2+) as well as a nucleic acid cofactor is required for activity. Poly(dT), single-stranded circular DNA, and heat-denatured DNA were very effective. Native DNA was little effective with an efficiency of 29% of that obtained with heat-denatured DNA. In addition, the enzyme showed almost no activity with poly(dA).poly(dT) although it showed very high activity with the noncomplementary combination of poly(dT) and poly(dC), suggesting that ATPase B requires single-stranded DNA for activity. ATP altered the affinity of ATPase B for single-stranded DNA. The interaction of the enzyme with DNA was studied by Sephadex G-200 gel filtration assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Yeast mitochondrial ATP synthase has three regulatory proteins, ATPase inhibitor, 9K protein, and 15K protein. The 9K protein binds directly to purified F1-ATPase, as does the ATPase inhibitor, but the 15K protein does not [Hashimoto, T. et al. (1987) J. Biochem. 102, 685-692]. In the present study, we found that 15K protein bound to purified F1F0-ATPase, forming an equimolar complex with the enzyme. The apparent dissociation constant was calculated to be 1.4 x 10(-5) M. The ATPase inhibitor and 9K protein also bound to F1F0-ATPase in the presence of ATP and Mg2+, and the dissociation constants of their bindings were about 3 X 10(-6) M. They bound to the enzyme competitively in the absence of 15K protein, but in its presence, they bound in equimolar amounts to the enzyme. The ATP-hydrolyzing activity of the enzyme-ligand complex was greatly influenced by the order of bindings of ATPase inhibitor and 9K protein: when the ATPase inhibitor was bound first, the activity of the enzyme was inhibited completely and was not restored by 9K protein, but when 9K protein was added first, the activity was inhibited only partially even after equimolar binding of the ATPase inhibitor to the enzyme. These observations strongly suggest that the 15K protein binds to the F0 part and functions to hold the ATPase inhibitor or 9K protein on the F1 subunit.  相似文献   

6.
Membrane-bound ATPase activity was detected in the methanogen Methanococcus voltae. The ATPase was inhibited by vanadate, a characteristic inhibitor of E1E2 ATPases. The enzyme activity was also inhibited by diethylstilbestrol. However, it was insensitive to N,N'-dicyclohexylcarbodiimide, ouabain, and oligomycin. The enzyme displayed a high preference for ATP as substrate, was dependent on Mg2+, and had a pH optimum of approximately 7.5. The enzyme was completely solubilized with 2% Triton X-100. The enzyme was insensitive to oxygen and was stabilized by ATP. There was no homology with the Escherichia coli F0F1 ATPase at the level of DNA and protein. The membrane-bound M. voltae ATPase showed properties similar to those of E1E2 ATPases.  相似文献   

7.
1. F1-ATPase has been extracted by the diphosphatidylglycerol procedure from mitochondrial ATPase complexes that differ in ATPase activity, cold stability, ATPase inhibitor and magnesium content. 2. The ATPase activity of the isolated enzymes was dependent upon the activity of the original particles. In this respect, F1-ATPase extracted from submitochondrial particles prepared in ammonia (pH 9.2) and filtered through Sephadex G-50 was comparable to the enzyme purified by conventional procedures (Horstman, L.L. and Racker, E. (1970) J. Biol. Chem. 245, 1336--1344), whereas F1-ATPase extracted from submitochondrial particles prepared in the presence of magnesium and ATP at neutral pH was similar to factor A (Andreoli, T.E., Lam, K.W. and Sanadi, D.R. (1965) J. Biol. Chem. 240, 2644--2653). 3. No systematic relationship has been found in these F1-ATPase preparations between their ATPase inhibitor content and ATPase activity. Rather, a relationship has been observed between this activity and the efficiency of the ATPase inhibitor-F1-ATPase association within the membrane. 4. It is concluded that the ATPase activity of isolated F1-ATPase reflects the properties of original ATPase complex provided a rapid and not denaturing procedure of isolation is employed.  相似文献   

8.
A novel ATPase was solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, with low ionic strength buffer containing EDTA. The enzyme was purified to homogeneity by hydrophobic chromatography and gel filtration. The molecular weight of the purified enzyme was estimated to be 360,000. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate revealed that it consisted of three kinds of subunits, alpha, beta, and gamma, whose molecular weights were approximately 69,000, 54,000, and 28,000, respectively, and the most probable subunit stoichiometry was alpha 3 beta 3 gamma 1. The purified ATPase hydrolyzed ATP, GTP, ITP, and CTP but not UTP, ADP, AMP, or p-nitrophenylphosphate. The enzyme was highly heat stable and showed an optimal temperature of 85 degrees C. It showed an optimal pH of around 5, very little activity at neutral pH, and another small activity peak at pH 8.5. The ATPase activity was significantly stimulated by bisulfite and bicarbonate ions, the optimal pH remaining unchanged. The Lineweaver-Burk plot was linear, and the Km for ATP and the Vmax were estimated to be 1.6 mM and 13 mumol Pi.mg.-1.min-1, respectively, at pH 5.2 at 60 degrees C in the presence of bisulfite. The chemical modification reagent, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, caused inactivation of the ATPase activity although the enzyme was not inhibited by N,N'-dicyclohexylcarbodiimide, N-ethyl-maleimide, azide or vanadate. These results suggest that the ATPase purified from membranes of S. acidocaldarius resembles other archaebacterial ATPases, although a counterpart of the gamma subunit has not been found in the latter. The relationship of the S. acidocaldarius ATPase to other ion-transporting ATPases, such as F0F1 type or E1E2 type ATPases, was discussed.  相似文献   

9.
The coupling factor of oxidative phosphorylation from beef heart mitochondria obtained as a "latent F1," exhibits negligible levels of ATPase activity, contains stoichiometric amounts of the specific F1 inhibitor protein, and is stable to incubation at low temperature (Adolfsen, R., McClung, J.A., and Moudrianakis, E. N. (1975) Biochemistry 14, 1727-1735). Incubation of the latent F1 enzyme at 60 degrees C activates its ATPase activity. We show in this paper that regulation of the interaction of the inhibitor protein with the latent F1 enzyme can be accomplished under more physiological conditions. At 37 degrees C, variations in the proton concentration led to changes in the degree and extent of activation of the enzyme, with maximal activation rates occurring after preincubation at pH 9.6. The energy for the pH 9.6-induced activation process (12.1 kcal/mol) was similar to that reported for the dissociation of the inhibitor protein from the membrane-bound F1 enzyme in energized mitochondria (Gomez-Fernandez, J. C., and Harris, D.A. (1978) Biochem. J. 176, 967-973). The rates of activation were higher in the presence of 5 mM ATP and inhibited by the presence of Mg2+, suggesting the existence of a specific binding site for Mg2+ between the inhibitor subunit and the F1 enzyme. A model is presented in which the activation of the latent F1 enzyme is brought about by a rapid titration of positively charged amino acid residues on the inhibitor subunit, followed by a slow release of a tightly bound Mg2+ atom. This model predicts that the initial event leading to the appearance of ATP synthesis is the deprotonation of the inhibitor subunit and that the onset of ATPase activity in mitochondria is due to sequestering of the available free Mg2+.  相似文献   

10.
A purified preparation of ATPase (factor F1) from the Acholeplasma laidlawii was obtained. The purification procedure included extraction of the enzyme complex from the isolated membranes by ultrasonication, chromatography on DEAE-cellulose and gel filtration on Sepharose 6B. The specific activity of the ATPase was increased 30-fold as compared to the original activity. The Km value for ATP hydrolysis was 7,4 . 10(-4) M. ADP competitively inhibited the enzyme (Ki = 2,0 . 10(-4) M). Ouabain (2,5 . 10(-4) M) and dicyclohexylcarbodiimide (1,0 . 10(-4) M) did not inhibit the ATPase activity. The enzyme was activated by Mg2+, but was inhibited by a combination of Na+ and K+. The enzyme is cold-labile, but can be stabilized by storage in buffer solutions, containing methanol, glycerol or lecithin.  相似文献   

11.
A partial revertant from a mutant with modified alpha subunits of mitochondrial ATPase-ATPsynthase has been obtained for the first time from the yeast Schizosaccharomyces pombe. The purified F1 contains a lower amount of endogenous nucleotides as compared to the wild-strain enzyme. In contrast to the wild-type, the F1 ATPase activity from the revertant does not exhibit bicarbonate-sensitive negative cooperativity. The revertant Michaelis constant for Mg-ATP is very similar to that of normal F1 in the presence of bicarbonate while the Vm is slightly lower. The revertant enzyme is much less sensitive to inhibitions by ADP and by azide. It is proposed that the lack of negative cooperativity of revertant F1 ATPase activity is due to lower affinity for ADP, the release of which is no longer the rate-limiting step.  相似文献   

12.
Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase.   总被引:110,自引:0,他引:110  
Beef heart mitochondrial ATPase (F1) exhibited a single binding site for Pi. The interaction with Pi was reversible, partially dependent on the presence of divalent metal ions, and characterized by a dissociation constant at pH 7.5 of 80 micronM. A variety of substances known to influence oxidative phosphorylation or the activity of the soluble ATPase (F1) also influenced Pi binding by the enzyme. Thus aurovertin, an inhibitor of oxidative phosphorylation, which was bound tightly by F1 and inhibited ATPase activity, enhanced Pi binding via a 4-fold increase in the affinity of the enzyme for Pi (KD = 20 micronM) but did not alter binding stoichiometry. Anions such as SO4(2-), SO3(2-), chromate, and 2,4-dinitrophenolate, which stimulated ATPase activity of F1, also enhanced Pi binding. Inhibitors of ATPase activity such as nickel/bathophenanthroline and the protein ATPase inhibitor of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) inhibited Pi binding. The adenine nucleotides ADP, ATP, and the ATP analog adenylyl imidodiphosphate as well as the Pi analog arsenate, also inhibited Pi binding. The observations suggest that the Pi binding site was located in or near an adenine nucleotide binding site on the molecule.  相似文献   

13.
Membrane-bound ATPase was found in membranes of the archaebacterium Methanosarcina barkeri. The ATPase activity required divalent cations, Mg2+ or Mn2+, and maximum activity was obtained at pH 5.2. The activity was specifically stimulated by HSO3- with a shift of optimal pH to 5.8, and N,N'-dicyclohexylcarbodiimide inhibited ATP hydrolysis. The enzyme could be solubilized from membranes by incubation in 1 mM Tris-maleate buffer (pH 6.9) containing 0.5 mM EDTA. The solubilized ATPase was purified by DEAE-Sepharose and Sephacryl S-300 chromatography. The molecular weight of the purified enzyme was estimated to be 420,000 by gel filtration through Sephacryl S-300. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate revealed two classes of subunit, Mr 62,000 (alpha) and 49,000 (beta) associated in the molar ratio 1:1. These results suggest that the ATPase of M. barkeri is similar to the F0F1 type ATPase found in many eubacteria.  相似文献   

14.
Activation of translation initiation is a common trait of cancer cells. Formation of the heterotrimeric eukaryotic initiation factor F (eIF4F) complex is the rate-limiting step in 5′ m7GpppN cap-dependent translation. This trimeric complex includes the eIF4E cap binding protein, the eIF4G scaffolding protein, and the DEAD box RNA helicase eIF4A. eIF4A is an ATP-dependent helicase and because it is the only enzyme in the eIF4F complex, it has been shown to be a potential therapeutic target for a variety of malignancies. To this end, we have used a simple ATPase biochemical screen to survey several hundred marine and terrestrial derived natural products. Herein, we report the discovery of two natural products from marine sources, elisabatin A (1) and allolaurinterol (2), which show low µM inhibition of eIF4A ATPase activity. Enzymological analyses revealed 1 and 2 to be ATP-competitive, and cellular evaluations showed reasonable cytotoxicity against A549 (lung cancer) and MDA-MA-468 (breast cancer) cell lines. However, only compound 2 showed potent inhibition of helicase activity congruent with its ATPase inhibitory activity.  相似文献   

15.
The ATPase activity of Zajdela hepatoma and Yoshida sarcoma submitochondrial particles was several times lower than the enzyme activity in rat heart and rat liver submitochondrial particles. The content of F1-ATPase in the tumor mitochondria was found not to be very different from that in mitochondria of rat liver. Immunochemical determination of the amount of the natural ATPase inhibitor revealed that the tumor mitochondria contain 2-3-times more ATPase inhibitor than control mitochondria. It is concluded that the low ATPase activity of the tumor mitochondria results from the inhibition of the enzyme activity by the natural ATPase inhibitor.  相似文献   

16.
A new isolate of the aceticlastic methanogen Methanothrix thermophila utilizes only acetate as the sole carbon and energy source for methanogenesis (Y. Kamagata and E. Mikami, Int. J. Syst. Bacteriol. 41:191-196, 1991). ATPase activity in its membrane was found, and ATP hydrolysis activity in the pH range of 5.5 to 8.0 in the presence of Mg2+ was observed. It had maximum activity at around 70 degrees C and was specifically stimulated up to sixfold by 50 mM NaHSO3. The proton ATPase inhibitor N,N'-dicyclohexylcarbodiimide inhibited the membrane ATPase activity, but azide, a potent inhibitor of F0F1 ATPase (H(+)-translocating ATPase of oxidative phosphorylation), did not. Since the enzyme was tightly bound to the membranes and could not be solubilized with dilute buffer containing EDTA, the nonionic detergent nonanoyl-N-methylglucamide (0.5%) was used to solubilize it from the membranes. The purified ATPase complex in the presence of the detergent was also sensitive to N,N'-dicyclohexylcarbodiimide, and other properties were almost the same as those in the membrane-associated form. The purified enzyme revealed at least five kinds of subunits on a sodium dodecyl sulfate-polyacrylamide gel, and their molecular masses were estimated to be 67, 52, 37, 28, and 22 kDa, respectively. The N-terminal amino acid sequences of the 67- and 52-kDa subunits had much higher similarity with those of the 64 (alpha)- and 50 (beta)-kDa subunits of the Methanosarcina barkeri ATPase and were also similar to those of the corresponding subunits of other archaeal ATPases. The alpha beta complex of the M. barkeri ATPase has ATP-hydrolyzing activity, suggesting that a catalytic part of the Methanothrix ATPase contains at least the 67- and 52-kDa subunits.  相似文献   

17.
Studies on the effects of polyamines on oligomycin-sensitive ATPase activity of ox heart submitochondrial particles showed that, of the polyamines tested, only spermine affected the enzyme activity. Spermine within the physiological concentration range increased the Vmax. of the enzyme, but the Km for ATP was virtually unaffected. Binding studies of [14C]spermine to submitochondrial particles, under the same conditions as used for the ATPase assay, showed that the spermine binds to submitochondrial particles in a co-operative way; Hill plots of the data gave a Hill coefficient of 2 and a Kd of 8 microM. When submitochondrial particles were treated with trypsin, ATPase was not stimulated by spermine and the amount of spermine bound concomitantly was drastically decreased. The ATPase activity of isolated F1-ATPase was not affected by spermine. Removal of the natural protein ATPase inhibitor did not suppress either the stimulation of the ATPase activity by spermine or the spermine binding to the particles. The results obtained suggested that the polyamine binds and acts at the level of the liaison between the coupling factor F1 and the membrane sector F0 of the ATPase complex.  相似文献   

18.
M Seki  T Enomoto  J Yanagisawa  F Hanaoka  M Ui 《Biochemistry》1988,27(5):1766-1771
The DNA helicase activity of DNA-dependent ATPase B purified from mouse FM3A cells [Seki, M., Enomoto, T., Hanaoka, F., & Yamada, M. (1987) Biochemistry 26, 2924-2928] has been further characterized. The helicase activity was assayed with partially duplex DNA substrates in which oligonucleotides to be released by the enzyme were radiolabeled. Oligonucleotides with or without phosphate at the 5' termini or with a deoxy- or dideoxyribose at the 3'-terminal nucleotides were displaced by this enzyme with essentially the same efficiency and with the same ATP (and dATP) and Mg2+ requirements. Thus, there was no strict structure requirement for both ends of duplex regions of substrates to be unwound by the enzyme. Shorter strands were released more readily than longer strands up to the length of 140 bases. The attachment of the enzyme to a single-stranded DNA region was a prerequisite for the neighboring duplex to be unwound; the enzyme-catalyzed unwinding was inhibited competitively by the coaddition of single-stranded DNAs which act as cofactors of the ATPase activity. Their activities as the inhibitor of helicase were well correlated with those as the cofactor of ATPase. The helicase B was found to migrate along single-stranded DNA in the 5' to 3' direction by the use of single strands with short duplex regions at both 3' and 5' ends as substrate. A possible role of this enzyme in DNA replication in mammalian cells is discussed.  相似文献   

19.
F(0).F(1)-ATP synthase in tightly coupled inside-out vesicles derived from Paracoccus denitrificans catalyzes rapid respiration-supported ATP synthesis, whereas their ATPase activity is very low. In the present study, the conditions required to reveal the Deltamu(H+)-generating ATP hydrolase activity of the bacterial enzyme have been elucidated. Energization of the membranes by respiration results in strong activation of the venturicidin-sensitive ATP hydrolysis, which is coupled with generation of Deltam?(H+). Partial uncoupling stimulates the proton-translocating ATP hydrolysis, whereas complete uncoupling results in inhibition of the ATPase activity. The presence of inorganic phosphate is indispensable for the steady-state turnover of the Deltam?(H+)-activated ATPase. The collapse of Deltam?(H+) brings about rapid deactivation of the enzyme, which has been subjected to pre-energization. The rate and extent of the deactivation depend on protein concentration, i.e. the more vesicles are present in the assay mixture, the higher the rate and extent of the deactivation is seen. Sulfite and the ADP-trapping system protect ATPase against the Deltam?(H+) collapse-induced deactivation, whereas phosphate delays the rate of deactivation. A low concentration of ADP (<1 microm) increases the rate of deactivation. Taken together, the results suggest that latent proton-translocating ATPase in P. denitrificans is kinetically equivalent to the previously characterized ADP(Mg2+)-inhibited, azide-trapped bovine heart mitochondrial F(0).F(1)-ATPase (Galkin, M. A., and Vinogradov, A. D. (1999) FEBS Lett. 448, 123-126). A Deltam?(H+)-sensitive mechanism operates in P. denitrificans that prevents physiologically wasteful consumption of ATP by F(0).F(1)-ATPase (synthase) complex when the latter is unable to maintain certain value of Deltam?(H+).  相似文献   

20.
Nucleotide-depleted mitochondrial F1-ATPase binds 3'-(2')-O-(2-nitro-4-azidobenzoyl)-derivatives of ATP (NAB-ATP) and GTP (NAB-GTP) when these nucleotide analogues are added to the enzyme in equimolar quantities in the presence of Mg2+ (uni-site catalysis conditions). The binding of NAB-ATP is accompanied by its hydrolysis and inorganic phosphate dissociation from the enzyme; NAB-ADP remains bound to F1-ATPase. The F1-ATPase X NAB-ADP complex has no ATPase activity and its reactivation in the presence of an excess of ATP is accompanied by NAB-ADP release. The illumination of the F1-ATPase complexes with NAB-ADP or NAB-GDP leads to the covalent binding of one nucleotide analogue molecule to the enzyme and to the irreversible inactivation of F1-ATPase. It follows from the results obtained that the modification of just one of the F1-ATPase catalytic sites is sufficient to complete the inhibition of ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号