首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent revisions to the Xenopus fate map challenge the interpretation of previous maps and current models of amphibian axial patterning (Lane, M.C., Smith, W.C., 1999. The origins of primitive blood in Xenopus: implications for axial patterning. Development 126 (3), 423-434.; Lane, M.C., Sheets, M.D., 2000. Designation of the anterior/posterior axis in pregastrula Xenopus laevis. Dev. Biol. 225, 37-58). We determined the rostralmost contributions to both dorsal and ventral mesoderm concomitantly from marginal zone progenitors in stage 6 embryos. Data reveal an unequivocal rostral-to-caudal progression of both dorsal and ventral mesoderm across the pre-gastrula axis historically called the dorsal-ventral axis, and a dorsal-to-ventral progression from animal-to-vegetal in the marginal zone. These findings support the proposed revisions to the fate and axis orientation maps. Most importantly, these results raise questions about the role of the organizer grafts and organizer-derived BMP antagonists in the "induction" of secondary axes. We re-examine both phenomena, and find that organizer grafts and BMP antagonists evoke caudal-to-rostral mesodermal fate transformations, and not ventral-to-dorsal transformations as currently believed. We demonstrate that BMP antagonism evokes a second axis because it stimulates precocious mediolateral intercalation of caudal, dorsal mesoderm. The implications of these findings for models of organizer function in vertebrate axial patterning are discussed.  相似文献   

2.
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.  相似文献   

3.
In this study, we have analyzed the expression and function of Gremlin in the developing avian limb. Gremlin is a member of the DAN family of BMP antagonists highly conserved through evolution able to bind and block BMP2, BMP4 and BMP7. At early stages of development, gremlin is expressed in the dorsal and ventral mesoderm in a pattern complementary to that of bmp2, bmp4 and bmp7. The maintenance of gremlin expression at these stages is under the control of the AER, ZPA, and BMPs. Exogenous administration of recombinant Gremlin indicates that this protein is involved in the control of limb outgrowth. This function appears to be mediated by the neutralization of BMP function to maintain an active AER, to restrict the extension of the areas of programmed cell death and to confine chondrogenesis to the central core mesenchyme of the bud. At the stages of digit formation, gremlin is expressed in the proximal boundary of the interdigital mesoderm of the chick autopod. The anti-apoptotic influence of exogenous Gremlin, which results in the formation of soft tissue syndactyly in the chick, together with the expression of gremlin in the duck interdigital webs, indicates that Gremlin regulates the regression of the interdigital tissue. At later stages of limb development, gremlin is expressed in association with the differentiating skeletal pieces, muscles and the feather buds. The different expression of Gremlin in relation with other BMP antagonists present in the limb bud, such as Noggin, Chordin and Follistatin indicates that the functions of BMPs are regulated specifically by the different BMP antagonists, acting in a complementary fashion rather than being redundant signals.  相似文献   

4.
Bone morphogenetic protein 1 (BMP1) is a metalloprotease that ventralises dorsal mesoderm when overexpressed in early Xenopus embryos. Here we show that Xenopus BMP1 blocks the dorsalising activity of chordin, but not noggin or DeltaxBMPR, when coexpressed in the ventral marginal zone and degrades chordin protein in vitro. We also show that a dominant-negative mutation for XBMP1 (dnBMP1) dorsalises ventral mesoderm in vivo, and blocks degradation of chordin by both XBMP1 and Xolloid, a closely related Xenopus metalloprotease, in vitro. dnBMP1 does not dorsalise ventral mesoderm in UV-irradiated embryos, demonstrating that this activity is dependent upon a functional organiser--the natural source of chordin in Xenopus gastrulae. Our results suggest that XBMP1 may regulate the availability of chordin during vertebrate embryogenesis.  相似文献   

5.
Signals from the non-neural ectoderm, the neural ectoderm, and the underlying mesoderm have all been implicated in the induction of neural crest. Bone morphogenetic protein (BMP) signaling in particular has an important role in this process; however, it is unclear whether this activity of BMP is due to its effects on patterning the underlying mesoderm, to its ability to establish a competent neural plate boundary zone, or to the direct specification of neural crest at intermediate levels of activity within a BMP gradient. We show neural crest induction occurs in zebrafish in the absence of involuted mesoderm, indicating that this tissue and signals derived from it are dispensable for the formation of neural crest. Dorsal-involuted mesoderm is a major source of secreted BMP antagonists, and the activity of BMP signaling is thought to depend on the presence of the opposing activity of these antagonists. We find that the three BMP antagonists known to be expressed during gastrulation in zebrafish, noggin1, follistatin, and chordin, are dispensable for neural crest induction. These results suggest that mechanisms for restricting the spatio-temporal pattern of BMP expression may compensate for the loss of secreted BMP antagonist activity in establishing dorso-ventral patterning, neural induction, and the neural crest.  相似文献   

6.
Mesoderm of early vertebrate embryos gradually acquires dorsal–ventral polarity during embryogenesis. This specification of mesoderm is thought to be regulated by several polypeptide growth factors. Bone morphogenetic protein (BMP), a member of the TGF-β family, is one of the regulators suggested to be involved in the formation of ventral mesoderm. In this paper, the nature of the endogenous BMP signal in dorsal–ventral specification was assessed in early Xenopus embryos using a dominant negative mutant of the Xenopus BMP receptor. In ectodermal explant assays, disruption of endogenous BMP signaling by the mutant receptor changed the competence of the explant cells to mesoderm-inducing factors, activin and basic fibroblast growth factor (bFGF), and led to formation of neural tissue without mesoderm induction. This result suggests that endogenous BMP acts as a ventral mesoderm modifier rather than a ventral mesoderm inducer, and that interactions between endogenous BMP and mesoderm-inducing factors may be important in dorsal–ventral patterning of embryonic mesoderm. In addition, the induction of neural tissue by inhibition of the BMP signaling pathway also suggests involvement of BMP in neural induction.  相似文献   

7.
8.
Questions of dorsoventral axis determination and patterning in Xenopus seek to uncover the mechanisms by which particular mesodermal fates, for example somite, are specified in the dorsal pole of the axis while other mesoderm fates, for example, ventral blood island (VBI), are specified at the ventral pole. We report here that the genes Xvent-1, Xvent-2, and Xwnt-8 do not appear to be in the pathway of VBI induction, contrary to previous reports. Results from the selective inhibition of bone morphogenetic protein (BMP) activity, a key regulator of VBI induction, by ectopic Noggin, Chordin, or dominant negative BMP ligands and receptors suggest an alternative route of VBI induction. Injection of noggin or chordin RNA into animal pole blastomeres effectively inhibited VBI development, while marginal zone injection had no effect. Cell autonomous inhibition of BMP activity in epidermis with dominant negative ligand dramatically reduced the amount of (&agr;)T3 globin expression. These results indicate that signaling activity from the Spemann Organizer alone may not be sufficient for dorsoventral patterning in the marginal zone and that an inductive interaction between presumptive VBIs and ectoderm late in gastrulation may be crucial. In agreement with these observations, other results show that in explanted blastula-stage marginal zones a distinct pattern develops with a restricted VBI-forming region at the vegetal pole that is independent of the patterning activity of the Spemann Organizer.  相似文献   

9.
Bone morphogenetic protein (BMP) signaling is broadly implicated in dorsoventral (DV) patterning of bilaterally symmetric animals [1-3], and its role in axial patterning apparently predates the birth of Bilateria [4-7]. In fly and vertebrate embryos, BMPs and their antagonists (primarily Sog/chordin) diffuse and interact to generate signaling gradients that pattern fields of cells [8-10]. Work in other species reveals diversity in essential facets of this ancient patterning process, however. Here, we report that BMP signaling patterns the DV axis of segmental ectoderm in the leech Helobdella, a clitellate annelid (superphylum Lophotrochozoa) featuring stereotyped developmental cell lineages, but the detailed mechanisms of DV patterning in Helobdella differ markedly from fly and vertebrates. In Helobdella, BMP2/4s are expressed broadly, rather than in dorsal territory, whereas a dorsally expressed BMP5-8 specifies dorsal fate by short-range signaling. A BMP antagonist, gremlin, is upregulated by BMP5-8 in dorsolateral, rather than ventral territory, and yet the BMP-antagonizing activity of gremlin is required for normal ventral cell fates. Gremlin promotes ventral fates without disrupting dorsal fates by selectively inhibiting BMP2/4s, not BMP5-8. Thus, DV patterning in the development of the leech revealed unexpected evolutionary plasticity of the conserved BMP patterning system, presumably reflecting its adaptation to different modes of embryogenesis.  相似文献   

10.
In Xenopus, one of the properties defining Spemann's organizer is its ability to dorsalise the mesoderm. When placed ajacent to prospective lateral/ventral mesoderm (blood, mesenchyme), the organizer causes these cells to adopt a more axial/dorsal fate (muscle). It seems likely that a similar property patterns the primitive streak of higher vertebrate embryos, but this has not yet been demonstrated clearly. Using quail/chick chimaeras and a panel of molecular markers, we show that Hensen's node (the amniote organizer) can induce posterior primitive streak (prospective lateral plate) to form somites (but not notochord) at the early neurula stage. We tested two BMP antagonists, noggin and chordin (both of which are expressed in the organizer), for their ability to generate somites and intermediate mesoderm from posterior streak, and find that noggin, but not chordin, can do this. Conversely, earlier in development, chordin can induce an ectopic primitive streak much more effectively than noggin, while neither BMP antagonist can induce neural tissue from extraembryonic epiblast. Neurulation is accompanied by regression of the node, which brings the prospective somite territory into a region expressing BMP-2, -4 and -7. One function of noggin at this stage may be to protect the prospective somite cells from the inhibitory action of BMPs. Our results suggest that the two BMP antagonists, noggin and chordin, may serve different functions during early stages of amniote development.  相似文献   

11.
12.
13.
Bone morphogenetic proteins (BMP) direct dorsal–ventral patterning in both invertebrate and vertebrate embryos, with strong evolutionary conservation of molecular components of the pathway. Dorsal–ventral patterning of the early Drosophila embryo is a powerful experimental system to probe mechanisms of BMP gradient formation and interpretation. Recent studies have found that spatial patterns of activated BMP signal transducers in Drosophila go through an unexpected transition: a shallow gradient of weak responses at mid-cellularization changes to a step gradient of stronger responses in cellularized embryos. The transition between two gradients of different shape yields new insights into the progression of Drosophila dorsal–ventral patterning and raises new issues about the mechanisms of gradient formation.  相似文献   

14.
15.
Xenopus GDF6, a new antagonist of noggin and a partner of BMPs.   总被引:5,自引:0,他引:5  
In Xenopus, ectodermal cell fates are determined by antagonistic interaction between the BMP subfamily of TGF-(beta) ligands and the organizer-specific secreted factors (e.g. noggin, chordin and follistatin). Inhibition of BMP function by these factors can convert cells from an epidermal to a neural cell fate. In this study, we report that GDF6, a new member of the Xenopus TGF-(beta) family, can function in antagonistic interaction with neural inducers. GDF6 induces epidermis and inhibits neural tissue in dissociated cells, and this activity is blocked by the presence of noggin. We demonstrate that GDF6 binds directly to the neural inducer noggin. Furthermore, we find that GDF6 and BMP2 can form heterodimers and the process seems to require cotranslation of the proteins in the same cells. In normal embryos, GDF6 and BMP2 are coexpressed in several places, including the edge of the neural plate at early neurula stages, suggesting that GDF6 may synergize with BMPs to regulate patterning of the ectoderm. Our data show for the first time that noggin can bind directly to and inhibit another TGF-(beta) family member: GDF6. In addition, BMP and GDF6 heterodimers may play an important role in vivo to regulate cell fate determination and patterning.  相似文献   

16.
BMP signals play important roles in the regulation of diverse events in development and in the adult. In amniotes, like the amphibian Xenopus laevis, BMPs promote ventral specification, while chordin and other BMP inhibitors expressed dorsally in the Spemann's organizer play roles in establishment and/or maintenance of this region as dorsal endomesoderm. The activities of chordin are in turn regulated by the secreted proteolytic enzymes BMP1 and Xolloid. Recently, we and others have identified the protein twisted gastrulation (TSG) as a soluble BMP modulator that functions by modifying chordin activity. Overexpression and genetic analyses in Drosophila, Xenopus and zebrafish together with in vitro biochemical studies suggest that TSG might act as a BMP antagonist; but there is also evidence that TSG may promote BMP signaling. Here we report examination of the in vivo function of TSG in early Xenopus development using a loss-of-function approach. We show that reducing TSG expression using antisense TSG morpholino oligonucleotides (MOs) results in moderate head defects. These defects can be rescued both by a TSG that cannot be inhibited by the MO, and by the BMP antagonists chordin and noggin. Furthermore, while neither the onset of gastrulation nor the expression of marker genes are affected in early gastrulae, dorsal marker gene expression is reduced at the expense of expanded ventral marker gene expression beginning at mid to late gastrula stage. TSG-MO and Chd-MOs also cooperate to strongly repress head formation. Finally, we note that the loss of TSG function results in a shift in tissue responsiveness to the BMP inhibitory function of chordin in both animal caps and the ventral marginal zone, a result that implies that the activity of TSG may be required for chordin to efficiently inhibit BMPs in these developmental contexts. These data, taken together with the biochemistry and overexpression studies, argue that TSG plays an important role in regulating the potency of chordin's BMP inhibitory activity and TSG and chordin act together to regulate the extent of dorsoanterior development of early frog embryos.  相似文献   

17.
18.
Transplanted Spemann's organizer induces dorsal embryonic cell fates such as the nervous system and somites, but in normal development, elimination of individual organizer signals (such as the bone morphogenetic protein [BMP] antagonists) has surprisingly modest effects on these tissues. Thus, the role of BMP antagonists may be limited to fine tuning the size of the dorsal domain. However, at least five BMP antagonists are specifically expressed in the organizer, and all can mimic aspects of organizer function, suggesting overlapping functions. Here, we deplete the function of three BMP antagonists, chordin, noggin, and follistatin, in Xenopus tropicalis. We demonstrate that this results in catastrophic failure of dorsal development and expansion of ventral and posterior fates. We conclude that BMP antagonists are required for formation of the neural plate and dorsal mesoderm. In addition, our results show that neural specification requires the continuous activity of BMP antagonists from blastula through gastrula stages.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号