首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
月光及光照强度对艾虎微生境利用的影响   总被引:3,自引:1,他引:3  
月光及光照作为一种捕食风险对许多动物的微生境利用有明显的影响。野外的无线电遥测资料和室风模拟光照强度的研究表明,艾虎在明亮的月光期明显增加了加平坦灌丛区域的利用时间,灌丛作用一种隐蔽场所减少了艾虎被捕食的风险,艾虎在明亮的月光期增加对灌丛的利用是一种反捕食策略,无论光照强度如何。艾虎对有隐蔽洞道区域的利用程度较高,在无隐蔽物区域采用短时间的活动方式,在有隐蔽物区域采用长时间活动方式。这表明艾虎在进化过程中形成了反捕食策略,而不是躲避捕食的策略。  相似文献   

2.
在室内条件下,通过双通道选择实验比较艾虎在不同饥饿条件下对固定食物量斑块和变化食物量斑块的利用程度,确定艾虎对食物变化量的敏感性,以验证风险敏感取食原理。研究结果表明,训练期实验中,艾虎对固定食物量斑块中的取食量和利用频次明显高于变化食物量斑块,而对两个斑块的利用时间基本相同;艾虎饥饿一天后对固定食物量斑块中的利用频次明显高于变化食物量斑块,而对两个斑块的利用时间和取食量基本相同;艾虎饥饿两天后对两个斑块利用程度与训练期的结果相同;同时,艾虎在两个斑块中的取食量均与饥饿程度无关,而对两个斑块的利用时间和利用频次均随饥饿程度明显降低。因此,艾虎对固定食物量斑块和变化食物量斑块的利用程度基本相同,食物变化量对艾虎的取食行为没有明显影响,艾虎对食物变化量是不敏感的。产生这种结果的主要原因可能是艾虎的能量代谢水平较低,在食物受到限制时主要采用降低活动使单位活动时间内所获得的能量值达到最大的取食对策增加自身的存活机率。  相似文献   

3.
在室内条件下,通过双通道选择实验比较艾虎在不同饥饿条件下对固定食物量斑块和变化食物量斑块的利用程度,确定艾虎对食物变化量的敏感性,以验证风险敏感取食原理。研究结果表明,训练期实验中,艾虎对固定食物量斑块中的取食量和利用频次明显高于变化食物量斑块,而对两个斑块的利用时间基本相同;艾虎饥饿一天后对固定食物量斑块中的利用频次明显高于变化食物量斑块,而对两个斑块的利用时间和取食量基本相同;艾虎饥饿两天后对两个斑块利用程度与训练期的结果相同;同时,艾虎在两个斑块中的取食量均与饥饿程度无关,而对两个斑块的利用时间和利用频次均随饥饿程度明显降低。因此,艾虎对固定食物量斑块和变化食物量斑块的利用程度基本相同,食物变化量对艾虎的取食行为没有明显影响,艾虎对食物变化量是不敏感的。产生这种结果的主要原因可能是艾虎的能量代谢水平较低,在食物受到限制时主要采用降低活动使单位活动时间内所获得的能量值达到最大的取食对策增加自身的存活机率。  相似文献   

4.
艾虎对猎物和捕食者气味的反应   总被引:2,自引:1,他引:1  
在室内条件下通过双通道选择实验确定艾虎(Mustelaeversmanni)在通过不同气味源的场所中的取食量以及利用时间和利用频次,由此分析捕食者气味和猎物气味对艾虎取食行为的影响。研究结果表明,在无任何气味源存在时,艾虎在对照气味和对照气味组这两个场所中的取食量、活动时间和活动频次基本一致。在猎物高原鼠兔(Ochotonacurzoniae)气味和对照气味组及高原鼢鼠(Myospalaxbaileyi)气味和对照气味组的两组实验中,艾虎在通过猎物气味的场所中的取食量、活动时间和活动频次与对照气味场所中比较也无明显的差异,但是在天敌动物赤狐(Vulpesvulpes)气味存在的条件下,艾虎明显减少在通过赤狐气味的场所中的取食量、活动时间和活动频次。同时,当间接捕食风险天敌动物赤狐气味存在时,艾虎明显增加了总的取食量,减少了在巢箱中居住的时间,而将更多的时间停留在无风险的场所中,这说明艾虎能够利用天敌动物赤狐的气味,采用增加取食量和减少高风险区域活动时间的策略来降低被捕食风险。  相似文献   

5.
在室内条件下通过双通道选择实验确定艾虎(Mustela eversmanni)在通过不同气味源的场所中的取食量以及利用时间和利用频次,由此分析捕食者气味和猎物气味对艾虎取食行为的影响。研究结果表明,在无任何气味源存在时,艾虎在对照气味和对照气味组这两个场所中的取食量、活动时间和活动频次基本一致。在猎物高原鼠兔(Ochotona curzoniae)气味和对照气味组及高原鼢鼠(Myospalax baileyi)气味和对照气味组的两组实验中,艾虎在通过猎物气味的场所中的取食量、活动时间和活动频次与对照气味场所中比较也无明显的差异,但是在天敌动物赤狐(Vulpes vulpes)气味存在的条件下,艾虎明显减少在通过赤狐气味的场所中的取食量、活动时间和活动频次。同时,当间接捕食风险天敌动物赤狐气味存在时,艾虎明显增加了总的取食量,减少了在巢箱中居住的时间,而将更多的时间停留在无风险的场所中,这说明艾虎能够利用天敌动物赤狐的气味,采用增加取食量和减少高风险区域活动时间的策略来降低被捕食风险。  相似文献   

6.
艾虎对不同猎物的选择性   总被引:2,自引:0,他引:2  
在室内条件下,将高原鼢鼠(Myospalaxbaileyi)、高原鼠兔(Ochotonacurzoniae)和根田鼠(Microtusoeconomus)作为艾虎(Mustelaeversmanni)的猎物选择对象,研究艾虎对猎物的选择性及艾虎捕杀猎物的行为时间分配。实验结果表明:艾虎对三种猎物的搜寻时间和搜寻频次基本一致,在搜寻猎物的过程中并非已知洞道系统中所存在的食物信息,是一种机会主义的捕食者;艾虎除了具有典型鼬科动物捕杀猎物的方法外,能够根据猎物的大小、活动性和反捕食能力采用不同的捕杀方法,在捕杀猎物的过程中首先捕杀高原鼢鼠,其致死部位全部为头部,其次捕杀高原鼠兔,其致死部位除了头部外,明显增加了颈部的比例,最后捕杀根田鼠,其致死部位主要是头部和胸部;艾虎在捕杀猎物的过程中,追击根田鼠的时间最多,追击鼢鼠的时间最少,而用于捕杀根田鼠的时间最少,用于捕杀鼢鼠的时间最多,艾虎捕杀高原鼠兔后单位时间内获得的能量值最大,其次为捕杀高原鼢鼠,而捕杀根田鼠后单位时间内活动的能量值最小。因此,在室内条件下艾虎对猎物的选择性主要依赖于其本身处理猎物的行为时间分配和猎物的反捕食行为,使单位时间内获得的能量值最大.  相似文献   

7.
在室内条件下,将大鵟作为艾虎的天敌动物,通过双通道选择实验确定6 只成体艾虎在3 个捕食风险水平和4 种饥饿状态条件下的取食行为,探讨艾虎在取食过程中对饥饿风险与捕食风险的权衡策略。研究结果表明:在无捕食风险存在时,艾虎被剥夺食物0 d 和1 d 后对食物量不同的两个斑块中的取食量和利用频次均无明显不同(P > 0. 05),但对高食物量斑块的利用时间均明显高于低食物量斑块的(P <0.05),而艾虎被剥夺食物2 d和3 d后对高食物量斑块中的取食量和利用时间均明显高于低食物量斑块中的(P < 0.05),但在利用频次上均无明显差异(P > 0.05)。在面临低风险时,艾虎在4 种饥饿状态下均只利用无天敌动物存在的低食物量斑块,而基本不利用有天敌动物存在的高食物量斑块。在面临高风险时,艾虎不得不利用有天敌动物存在的食物斑块,被剥夺食物0 d 时艾虎对无风险、无食物量斑块的利用时间基本相同于对高风险、有食物量斑块的利用时间(P>0.05),而被剥夺食物1d、2 d 和3 d 后艾虎对高风险、有食物量斑块的利用时间明显高于无风险、无食物量斑块的(P< 0. 05)。在相同风险条件下,随着饥饿程度增加,艾虎在斑块中的取食量均明显增加(P< 0.05),而对斑块的利用时间和利用频次明显降低(P<0.05)。在相同的饥饿状态下,不同风险水平时,艾虎在斑块中的取食量无明显的差异(P>0.05),但在低风险和高风险时对斑块的利用时间和频次均明显低于无风险时的(P <0.05)。以上结果说明艾虎能够根据食物摄取率和自身的能量需求在捕食风险和饥饿风险之间做出权衡,当饥饿风险小于捕食风险时,艾虎趋于躲避捕食风险,当饥饿风险大于捕食风险时,艾虎趋于面对捕食风险,所采用的取食策略是减少活动时间和能量消耗,最大程度地提高单位时间内获得的能量。  相似文献   

8.
高原鼢鼠繁殖期和非繁殖期的行为比较   总被引:2,自引:0,他引:2  
本文在室内饲养条件下对高原鼢鼠(Myospalax baileyi)非繁殖期和繁殖期的行为进行了观察,定性、定量地对16中行为进行了描述和分析。结果表明,这两个时期的行为基本没有变化,但行为发生的频次和持续时间有极大的不同。个中行为的时间的分配在24小时内及其在两个不同时期之间均有一定的差异,而每小时内动物的主要行为表现为睡眠和休息、移动、取食、挖掘、相互接触。繁殖期,动物的活动时间增加,表现为挖掘活动和接触时间的加长,动物社会行为发生的频次和持续时间高于非繁殖期。  相似文献   

9.
2020年2月—2021年2月,采用直接观察与红外相机陷阱结合的方法,在四川唐家河国家级自然保护区的大草坪和大草堂区域,对绿尾虹雉Lophophorus lhuysii的繁殖周期及群体活动模式等进行了研究。共获取绿尾虹雉有效探测316次。研究结果表明:1)绿尾虹雉具有季节性群体活动的习性,群体在繁殖期前逐步解散,繁殖期后又逐步聚集,非繁殖期的越冬期会结成大群活动;2)绿尾虹雉的繁殖期为3月下旬—6月中下旬,雌性独自营巢繁殖,雄性多单独活动,也表现为集单性小群体活动;3)繁殖期群体大小为2.58只±0.94只,以单性群为主;非繁殖期群体大小为3.37只±2.30只,以单性群和雌雄混群为主,且两者的遇见率差异不明显;繁殖期和非繁殖期群体活动方式无显著差异。本研究结果丰富了绿尾虹雉的基础资料,为其保护管理策略的制订提供了科学依据。  相似文献   

10.
寄生物对宿主繁殖的影响取决于宿主对当前繁殖值和剩余繁殖值的权衡。球虫为微型寄生物,而微型寄生物对宿主当前繁殖值的影响较剩余繁殖值要大。因此,本研究检验了寄生在高原鼠兔肠道内的艾美耳球虫可影响其当前繁殖的假设。在繁殖早、中、晚期,野外共观测高原鼠兔170只。结果表明,不同繁殖期感染率有显著差异。在繁殖中期,未感染雌性的妊娠率显著高于感染雌性。且未妊娠雌性较妊娠雌性有更高的感染强度,但在另外两个繁殖期没有发现此效应。在雄性中,任何繁殖期的感染强度和感染率与睾丸和附睾指数均无显著相关性,且感染和未感染球虫雄性睾丸及附睾指数无显著差异。此外,野外观测实验结果表明,感染雌性的胚胎重较未感染雌性显著降低,与野外感染对胚胎重量影响的实验结果相一致。说明艾美耳球虫感染可影响胚胎的发育。上述结果说明,艾美耳球虫对高原鼠兔繁殖的影响随繁殖期而有不同效应,且存在性别间差异,这种效应可能与不同性别间的繁殖对策有关。  相似文献   

11.
Mounting evidence shows that artificial light at night (ALAN) alters biological processes across levels of organization, from cells to communities. Yet, the combined impacts of ALAN and natural sources of night-time illumination remain little explored. This is in part due the lack of accurate simulations of the complex changes moonlight intensity, timing and spectra throughout a single night and lunar cycles in laboratory experiments. We custom-built a novel system to simulate natural patterns of moonlight to test how different ALAN intensities affect predator–prey relationships over the full lunar cycle. Exposure to high intensity ALAN (10 and 50 lx) reversed the natural lunar-guided foraging pattern by the gastropod mesopredator Nucella lapillus on its prey Semibalanus balanoides. Foraging decreased during brighter moonlight in naturally lit conditions. When exposed to high intensity ALAN, foraging increased with brighter moonlight. Low intensity ALAN (0.1 and 0.5 lx) had no impact on foraging. Our results show that ALAN alters the foraging pattern guided by changes in moonlight brightness. ALAN impacts on ecosystems can depend on lunar light cycles. Accurate simulations of night-time light cycle will warrant more realistic insights into ALAN impacts and also facilitate advances in fundamental night-time ecology and chronobiology.  相似文献   

12.
While the influence of environmental variables, particularly temperature and rainfall, on the breeding behavior of amphibians is widely recognized, relatively few studies have addressed how the moon affects amphibian behavior. Yet, the lunar cycle provides several rhythmic temporal cues that animals could use to time important group events such as spawning, and the substantial changes in light levels associated with the different moon phases may also affect the behavior of nocturnal frogs. Using seven years of field observation data, we tested for lunar effects on the reproductive activity of male and female Eastern Gray Treefrogs (Hyla versicolor). We found that chorusing and breeding activity was statistically more likely to occur around the first quarter of the moon and during intermediately bright nights, but that reproductive activity also occurred during various other times during the lunar cycle. We discuss these findings in relation to the two main hypotheses of lunar effects on animals: predator avoidance and temporal synchronization of breeding.  相似文献   

13.
Kenneth A. Schmidt 《Oikos》2006,113(1):82-90
Non-lethal effects of predators on prey are initiated in the form of responses to direct and indirect cues of predation risk. Like their lethal equivalents, non-lethal effects may affect species further down the food web initiating a behaviorally-driven trophic cascade. I presented a direct cue of predation risk, owl vocalizations, to white-footed mice ( Peromyscus leucopus ) during either a new or full moon (indirect cue). Mice reduced their activity in space by nearly two-thirds in response to playbacks of owl vocalizations during a full moon. However, neither moonlight (full vs new) nor the presence/absence of owl calls had an effect on space use when each cue varied singly. Previous studies have demonstrated a tight correlation between spatial activity in mice as used in the current experiment and nest predation rates on ground-nesting birds. Because moonlight is a ubiquitous deterrent of activity in nocturnal rodents I used of long-term nesting records the veery ( Catharus fuscescens ) to test whether nest predation rates were correlated negatively with moonlight. For half the lunar cycle (∼full moon to new moon) predation rates decreased with moonlight as predicted. During the second half of the lunar cycle predation and moonlight did not correlate as expected, but this was likely due to the depletion of vulnerable nests after a period of in which predation rates were at their maximum near the full moon. These studies suggest that the non-lethal effects of predatory risk on mice (i.e. changes in space use) cascade to affect their prey. Through the mechanism of reduced space use by rodents, perceived predation risk has the potential to significantly and indirectly affect songbird nest predation rates.  相似文献   

14.
Many studies have shown that endotherms become more heterothermic when the costs of thermoregulation are high and/or when limited energy availability constrains thermoregulatory capacity. However, the roles of many ecological variables, including constraints on foraging opportunities and/or success, remain largely unknown. To test the prediction that thermoregulatory patterns should be related to foraging opportunities in a heterothermic endotherm, we examined the relationship between the lunar cycle and heterothermy in Freckled Nightjars (Caprimulgus tristigma), which are visually orienting, nocturnal insectivores that are dependent on ambient light to forage. This model system provides an opportunity to assess whether variation in foraging opportunities influences the expression of heterothermy. The nightjars were active and foraged for insects when moonlight was available but became inactive and heterothermic in the absence of moonlight. Lunar illumination was a much stronger predictor of the magnitude of heterothermic responses than was air temperature (T(a)). Our data suggest that heterothermy was strongly related to variation in foraging opportunities associated with the lunar cycle, even though food abundance appeared to remain relatively high throughout the study period. Patterns of thermoregulation in this population of Freckled Nightjars provide novel insights into the environmental and ecological determinants of heterothermy, with the lunar cycle, and not T(a), being the strongest predictor of torpor use.  相似文献   

15.
Natural light cycles synchronize behavioral and physiological cycles over varying time periods in both plants and animals. Many scleractinian corals exhibit diel cycles of polyp expansion and contraction entrained by diel sunlight patterns, and monthly cycles of spawning or planulation that correspond to lunar moonlight cycles. The molecular mechanisms for regulating such cycles are poorly understood. In this study, we identified four molecular clock genes (cry1, cry2, clock and cycle) in the scleractinian coral, Favia fragum, and investigated patterns of gene expression hypothesized to be involved in the corals' diel polyp behavior and lunar reproductive cycles. Using quantitative PCR, we measured fluctuations in expression of these clock genes over both diel and monthly spawning timeframes. Additionally, we assayed gene expression and polyp expansion-contraction behavior in experimental corals in normal light:dark (control) or constant dark treatments. Well-defined and reproducible diel patterns in cry1, cry2, and clock expression were observed in both field-collected and the experimental colonies maintained under control light:dark conditions, but no pattern was observed for cycle. Colonies in the control light:dark treatment also displayed diel rhythms of tentacle expansion and contraction. Experimental colonies in the constant dark treatment lost diel patterns in cry1, cry2, and clock expression and displayed a diminished and less synchronous pattern of tentacle expansion and contraction. We observed no pattern in cry1, cry2, clock, or cycle expression correlated with monthly spawning events suggesting these genes are not involved in the entrainment of reproductive cycles to lunar light cycles in F. fragum. Our results suggest a molecular clock mechanism, potentially similar to that in described in fruit flies, exists within F. fragum.  相似文献   

16.
ABSTRACT

It is claimed by some that the number of births occurring at the time of the full moon is greater than other phases of the lunar cycle; however, many publications fail to substantiate the claim leading to the conclusion it is myth. We tested using a novel approach the null hypotheses: (i) human birth is not lunar cycle-dependent and (ii) the number of births occurring at or around the time of the full moon is not different from the number occurring at the time of the other phases of the lunar cycle. We reviewed the birth records from 1 January 1996 to 16 March 2007 of the obstetric department of our hospital, which was then located in a relatively undeveloped area of Fukutsu city in Fukuoka Prefecture of southern Japan. A total of 1507 births satisfied all inclusion criteria, among others, being full-term and following spontaneously initiated labor. When the birth data were analyzed as done by other investigators, i.e. total number of births per lunar day, lunar phase was not found to be influential. However, more detailed analyses on the subset of babies born specifically during the nighttime hours (N = 362) revealed the number of births varied in relation specifically to the changing amount of moonlight during the nighttime at different stages of the lunar cycle, with highest number of births at or around the time of the full moon. In contrast, analyses on the subset of babies born specifically during the daytime hours (N = 377) revealed the number of births varied in relation specifically to the changing amount moonlight during the daytime at different stages of the lunar cycle, with the highest number of births at or around the time of the new moon. The initiation and culmination of human birth are typically a nocturnal process. The findings of this investigation are consistent with the hypothesis natural nighttime parturition is influenced by lunar phase, particularly the full moon, and, thus, they are consistent with the belief the moon exerts an affect upon the timing of human birth. We speculate the long-hold belief of the association between birth and lunar phase may be based on historical observations that in the absence of artificial light at night nocturnal births occurred in elevated number when the full moon brightly illuminated the nighttime sky.  相似文献   

17.
The term masking refers to immediate responses to stimuli that override the influence of the circadian timekeeping system on behavior and physiology. Masking by light and darkness plays an important role in shaping an organism's daily pattern of activity. Nocturnal animals generally become more active in response to darkness (positive masking) and less active in response to light (negative masking), and diurnal animals generally have opposite patterns of response. These responses can vary as a function of light intensity as well as time of day. Few studies have directly compared masking in diurnal and nocturnal species, and none have compared rhythms in masking behavior of diurnal and nocturnal species. Here, we assessed masking in nocturnal mice (Mus musculus) and diurnal grass rats (Arvicanthis niloticus). In the first experiment, animals were housed in a 12:12 light-dark (LD) cycle, with dark or light pulses presented at 6 Zeitgeber times (ZTs; with ZT0 = lights on). Light pulses during the dark phase produced negative masking in nocturnal mice but only at ZT14, whereas light pulses resulted in positive masking in diurnal grass rats across the dark phase. In both species, dark pulses had no effect on behavior. In the 2nd experiment, animals were kept in constant darkness or constant light and were presented with light or dark pulses, respectively, at 6 circadian times (CTs). CT0 corresponded to ZT0 of the preceding LD cycle. Rhythms in masking responses to light differed between species; responses were evident at all CTs in grass rats but only at CT14 in mice. Responses to darkness were observed only in mice, in which there was a significant increase in activity at CT 22. In the 3rd experiment, animals were kept on a 3.5:3.5-h LD cycle. Surprisingly, masking was evident only in grass rats. In mice, levels of activity during the light and dark phases of the 7-h cycle did not differ, even though the same animals had responded to discrete photic stimuli in the first 2 experiments. The results of the 3 experiments are discussed in terms of their methodological implications and for the insight they offer into the mechanisms and evolution of diurnality.  相似文献   

18.
The influence of moonlight on behavior has been well documented for many nocturnal mammals, including rodents, lagomorphs, badgers and bats. These studies have consistently shown that nocturnal mammals respond to bright moonlight by reducing their foraging activity, restricting their movement, and reducing their vocalizations. Lunar phobia among nocturnal mammals is generally believed to be a form of predator avoidance: numerous studies indicate that predation increases during moonlit nights. A study I conducted at Tangkoko Nature Reserve in Sulawesi, Indonesia, demonstrates that spectral tarsiers, (Tarsius spectrum), are not lunar phobic, but are lunar philic; they become more active during full moons. During full moons, spectral tarsiers increased foraging, decreased resting, increased travel (distance traveled per unit time, nightly path length, and home range size), increased the frequency of group travel and decreased the frequency of olfactory communication. I explore several potential hypotheses to account for the lack of lunar phobia and potential increased risk of predation resulting from this unusual behavior. Two hypotheses that may account for the behavior are that: 1) foraging efficiency increases during full moons and outweighs the increased risk of predation, and 2) predation risk is not greater during full moons. Instead, predation risk increases during new moons.  相似文献   

19.
Looking for differences in circadian clock characteristics of diurnal and nocturnal nonhuman primates, this article summarizes results of chronobiological studies carried out in various nocturnal, diurnal, and cathemeral prosimian and anthropoid primate species under controlled laboratory conditions, under seminatural conditions, and in the wild. In almost all circadian parameters investigated, no differences were discernible between the two main chrono-ecotypes, either in circadian period length and the influence upon it of after-effects, of light intensity, and ambient temperature, or in the PRC, re-entrainment behavior, rhythm splitting, and internal desynchronization. Diurnal and nocturnal or cathemeral species differed only in the phase of artificial or natural LDs to which their circadian activity phase was adjusted as well as in the characteristics of masking activity upon the rhythms produced by the direct inhibiting or enhancing effects of light. Pronounced lunar periodicity—observed in the activity rhythm of nocturnal neotropical owl monkeys, genus Aotus, in seminatural and natural environments as well as in wild cathemeral Malagasy lemurs, genus Eulemur—is shown to result from masking effects of moonlight. In captive Eulemur fulvus albifrons, a change from dark-active over cathemeral to light-active behavior, without concurrently changing the circadian phase-setting of activity to D, was produced by direct masking effects of a stepwise reduction of darktime luminosity on an LD 12:12 cycle. Long-term activity recordings carried out in wild diurnal Malagasy sifakas (Propithecus verreauxi) and cathemeral redfronted lemurs (Eulemur fulvus rufus), as well as in wild nocturnal owl monkeys (Aotus a. azarai) of the North Argentinean Chaco, yielded in all species distinct bimodal long- and short-day activity patterns with pronounced peaks during dusk and dawn. Applying Pittendrigh's two-oscillator concept to these results, it is hypothesized that the differences in chrono-ecotype behavior may result from variations in internal coupling and external phase-setting of morning and evening oscillators (m, e) to dawn and dusk, interacting with direct masking effects of light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号