首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of O-(1,2-diacylglycero)-4-(N,N,N-trimethyl)homoserine (DGTS), a betaine lipid, in ten samples of plants belonging to the division Lycopodiophyta collected in various habitats was studied. Homogeneous plant tissues (vegetative shoots and spikelets) and mixed tissues (shoots with spikelets) were analyzed. A particular attention was paid to the DGTS-synthesizing ability of various club mosses, various tissue types forming an organ in a single plant species, as well as the ratio between DGTS and other glycerolipid classes.  相似文献   

2.
Regulation of nitrogenase is not sufficiently understood to engineer symbioses that achieve a high N2 fixation rate under high levels of soil N. In the present hydroponic growth chamber study we evaluated the hypothesis that nitrogenase activity and the extent of its inhibition by NO3 may be related to both N and carbohydrate levels in plant tissues. A wide range of C:N ratios in various plant tissues (8.5 to 41.0, 1.9 to 3.7, and 0.8 to 1.8, respectively, in shoots, roots, and nodules) was generated through a combination of light and CO2 levels, using two soybean genotypes differing in C and N acquisition rates. For both genotypes, N concentration in shoots was negatively correlated to nitrogenase activity and positively correlated to the extent of nitrogenase inhibition by NO3. Furthermore, nitrogenase activity was positively correlated to total nonstructural carbohydrates (TNC) and C:N ratio in shoot and nodules for both genotypes. Nitrogenase inhibition by NO3 was negatively correlated to TNC and C:N ratio in shoots, but not in nodules for both genotypes. At the onset of nitrogenase inhibition by NO3, C:N ratio declined in shoots but not in nodules. These results indicate that both C and N levels in plant tissues are involved in regulation of nitrogenase activity. We suggest that the level of nitrogenase activity may be determined by (1) N needs (as determined by shoot C:N) and (2) availability of carbohydrates in nodules. Modulation of the nitrogenase activity may occur through sensing changes in plant N, i.e. changes in shoot C:N ratio, possibly through some phloem translocatable compound(s).  相似文献   

3.
Regulation of nitrogenase is not sufficiently understood to engineer symbioses that achieve a high N2 fixation rate under high levels of soil N. In the present hydroponic growth chamber study we evaluated the hypothesis that nitrogenase activity and the extent of its inhibition by NO3 may be related to both N and carbohydrate levels in plant tissues. A wide range of C:N ratios in various plant tissues (8.5 to 41.0, 1.9 to 3.7, and 0.8 to 1.8, respectively, in shoots, roots, and nodules) was generated through a combination of light and CO2 levels, using two soybean genotypes differing in C and N acquisition rates. For both genotypes, N concentration in shoots was negatively correlated to nitrogenase activity and positively correlated to the extent of nitrogenase inhibition by NO3. Furthermore, nitrogenase activity was positively correlated to total nonstructural carbohydrates (TNC) and C:N ratio in shoot and nodules for both genotypes. Nitrogenase inhibition by NO3 was negatively correlated to TNC and C:N ratio in shoots, but not in nodules for both genotypes. At the onset of nitrogenase inhibition by NO3, C:N ratio declined in shoots but not in nodules. These results indicate that both C and N levels in plant tissues are involved in regulation of nitrogenase activity. We suggest that the level of nitrogenase activity may be determined by (1) N needs (as determined by shoot C:N) and (2) availability of carbohydrates in nodules. Modulation of the nitrogenase activity may occur through sensing changes in plant N, i.e. changes in shoot C:N ratio, possibly through some phloem translocatable compound(s).  相似文献   

4.
Nitrogen-15 foliar applications for the production of field-labeled plant tissues may achieve more effective labeling of plant shoot and root tissues and minimize directly labeling the soil N fraction as occurs when15 N is soil applied. Consequently, foliar-labeled plant tissues should be better suited for subsequent 15N mineralization studies. A field experiment was conducted to determine the effectiveness of 15N-labeling and the accumulation of 15N in various plant parts of two tropical legumes. Desmodium ovalifolium Guillemin and Perrottet and Pueraria phaseoloides (Roxb.) Benth., grown in 0.5 m2 microplots, were labeled with foliar-applied urea containing 99 atom% 15N. Plants in each microplot received a total of 0.1698 g 15N that was applied all at once or split equally into two, three or four applications. Legume shoots and roots and soil were destructively harvested and analyzed for total 15N content. Averaged over both legumes and foliar application rates, total plant (shoots, flowers, leaf litter, and roots) recovery was approximately 79% of the 15N applied. The soil contained 3% of the 15N applied, of which 2.5 and 0.5% were in the inorganic and organic fractions, respectively. Nitrogen-15 recovery in shoots (76%) was sixty-five fold greater than in roots (1%) and about nineteen fold greater than the sum of roots and soil (4.1%), a much greater percent recovery than observed in other foliar labeling studies. Averaged over all four foliar split-application rates, 15N recovery by Desmodium shoots was greater than Pueraria. Results demonstrate that 15N foliar application to legumes is an effective method for labeling, resulting in atom% excess 15N levels and 15N recoveries comparable to those reported with the more traditional soil-labeling approach. Another advantage of this method is a nondestructive, in situ labeling method that permits separation of shoot and root residual N contribution to subsequent crops in N tracer studies.  相似文献   

5.
Yi G  Choi JH  Jeong EG  Chon NS  Jena KK  Ku YC  Kim DH  Eun MY  Jeon JS  Nam MH 《Hereditas》2005,142(2005):92-97
The spikelet identity gene "fzp" (frizzy panicle) is required for transformation of the floral meristems to inflorescent shoots. In fzp mutants, spikelets are replaced by branches and spikelet meristems produce massive numbers of branch meristems. We have isolated and characterized a new fzp mutant derived from anther culture lines in rice and designated as fzp-9(t). The fzp-9(t) mutant showed retarded growth habit and developed fewer tillers than those of the wild-type plant. The primary and secondary rachis branches of fzp-9(t) appeared to be normal, but higher-order branches formed continuous bract-like structures without developing spikelets. The genetic segregation of fzp-9(t) showed a good fit to the expected ratio of 3: 1. The sequence analysis of fzp-9(t) revealed that there is a single nucleotide base change upstream of the ERF (ethylene-responsive element-binding factor) domain compare to wild-type plant. The mutation point of fzp-9(t) (W66G) was one of the six amino acids of the ERF domain that contributed to GCC box-specific binding. The premature formation of a stop codon at the beginning of the ERF domain might cause a non-functional product.  相似文献   

6.
The presence of plant-uncoupling mitochondrial protein (PUMP), previously described by Vercesi et al. (1995), was screened in mitochondria of various organs or tissues of several plant species. This was done functionally, by monitoring purine nucleotide-sensitive linoleic acid-induced uncoupling, or by Western blots. The following findings were established: (1) PUMP was found in most of the higher plants tested; (2) since ATP inhibition of linoleic acid-induced membrane potential decrease varied, PUMP content might differ in different plant tissues, as observed with mitochondria from maize roots, maize seeds, spinach leaves, wheat shoots, carrot roots, cauliflower, broccoli, maize shoots, turnip root, and potato calli. Western blots also indicated PUMP presence in oat shoots, carnation petals, onion bulbs, red beet root, green cabbage, and Sedum leaves. (3) PUMP was not detected in mushrooms. We conclude that PUMP is likely present in the mitochondria of organs and tissues of all higher plants.  相似文献   

7.
The role of main stem (MS) sink size on N use by field-grown soft red winter wheat (Triticum aestivum L. cv Hart) was determined. At Feeke's growth stage 8 (last leaf just visible), 100 micromoles of 99 atom% 15N-ammonium was injected into the lower MS. At anthesis, MS sink size was adjusted by removal of 0, 33, 66, and 100% of the MS spikelets; tiller spikes were left intact. The MS and tiller average kernel size was unaffected by MS sink manipulations. The MS kernel N concentration increased when MS spikelets were removed. Tiller kernel N concentrations were unaffected except when the entire MS reproductive sink was removed, which caused an increase in tiller kernel N concentration. Net losses of MS vegetative N during grain fill were similar for all treatments except for plants lacking MS spikelets, which mobilized 30% less N from the MS. Labeled N was predominately (>90%) associated with the insoluble reduced N fraction of plant tissues at anthesis. Allocation of labeled N to tillers was not proportional to reduction in MS sink size. These results indicate that the reproductive sink on an individual culm has first priority for vegetative N mobilized during grain fill even when sink demand is reduced substantially.  相似文献   

8.
Wheat grain yield consists of three components: spikes per plant, grains per spike (i.e. head or ear), and grain weight; and the grains per spike can be dissected into two subcomponents: spikelets per spike and grains per spikelet. An increase in any of these components will directly contribute to grain yield. Wheat morphology biology tells that a wheat plant has no lateral meristem that forms any branching shoot or spike. In this study, we report two novel shoot and spike traits that were produced from lateral meristems in bread wheat. One is supernumerary shoot that was developed from an axillary bud at the axil of leaves on the elongated internodes of the main stem. The other is supernumerary spike that was generated from a spikelet meristem on a spike. In addition, supernumerary spikelets were generated on the same rachis node of the spike in the plant that had supernumerary shoot and spikes. All of these supernumerary shoots/spikes/spikelets found in the super wheat plants produced normal fertility and seeds, displaying huge yield potential in bread wheat.  相似文献   

9.
Engineering a root-specific, repressor-operator gene complex   总被引:1,自引:0,他引:1  
Strong, tissue-specific and genetically regulated expression systems are essential tools in plant biotechnology. An expression system tool called a 'repressor-operator gene complex' (ROC) has diverse applications in plant biotechnology fields including phytoremediation, disease resistance, plant nutrition, food safety, and hybrid seed production. To test this concept, we assembled a root-specific ROC using a strategy that could be used to construct almost any gene expression pattern. When a modified E. coli lac repressor with a nuclear localization signal was expressed from a rubisco small subunit expression vector, S1pt::lacIn, LacIn protein was localized to the nuclei of leaf and stem cells, but not to root cells. A LacIn repressible Arabidopsis actin expression vector A2pot was assembled containing upstream bacterial lacO operator sequences, and it was tested for organ and tissue specificity using beta-glucuronidase (GUS) and mercuric ion reductase (merA) gene reporters. Strong GUS enzyme expression was restricted to root tissues of A2pot::GUS/S1pt::lacIn ROC plants, while GUS activity was high in all vegetative tissues of plants lacking the repressor. Repression of shoot GUS expression exceeded 99.9% with no evidence of root repression, among a large percentage of doubly transformed plants. Similarly, MerA was strongly expressed in the roots, but not the shoots of A2pot::merA/S1pt::lacIn plants, while MerA levels remained high in both shoots and roots of plants lacking repressor. Plants with MerA expression restricted to roots were approximately as tolerant to ionic mercury as plants constitutively expressing MerA in roots and shoots. The superiority of this ROC over the previously described root-specific tobacco RB7 promoter is demonstrated.  相似文献   

10.
Performance of Typha angustifolia, a species common in European wetlands, was studied in connection with wetlands eutrophication. Cultivation in a sand culture was used to follow the effect of nutrient availability per se and to study, in detail, both aboveground as well as belowground organs (rhizomes and roots) of the plant in contrast to the possibilities of field study. A complex study of growth, carbohydrate, and nitrogen metabolic relationships, with respect to tissue age, was done in plants growing in nutrient solutions that differed in their levels of N and P (oligotrophic: 0.026 mM N and 0.001 mM P; eutrophic: 2.635 mM N and 0.0999 mM P; hypertrophic treatment: 9.539 mM N and 0.999 mM P).In contrast to the poor growth of Typha plants under the oligotrophic treatment, Typha coped best under the eutrophic treatment. Further increase in nutrient availability to the hypertrophic treatment did not result in additional stimulation of growth, but instead some negative reactions appeared. Changes in the growth and allocation of biomass, in favour of shoots and including rhizomes (as compared with roots) with increasing nutrient availability, were accompanied by an increase in N allocation and content of non-structural carbohydrates in these tissues. Detailed biochemical analysis revealed significant differences between tissues of different ages. These characteristics probably reflect the physiological potential of this species for their successful spreading in natural eutrophic habitats. Moreover, a decrease in the C/N ratio, decreasing proportion of starch/soluble sugars ratio, increasing proportion of hexoses/sucrose ratio (taking into account the type and tissue age of plant organs), with increasing nutrient availability, indicate high metabolic activity of the tissues at the stage of maximum growth.  相似文献   

11.
A novel technique is reported for softening plant tissues while retaining their shape by impregnating them with macerating enzymes under reduced pressure after defrosting the frozen plants. Samples were removed immediately from the enzyme solution after the freeze-infusion treatment, and the hardness was measured. Six enzymes and three enzymes were respectively chosen from 18 commercial enzymes for softening burdock roots and bamboo shoots. The tissue degradation due to impregnation of the tissues with the enzymes and the reaction time were investigated. Burdock roots and bamboo shoots were progressively softened during the reaction: the hardness reached 1.0 x 10(4) N/m(2) or less. The water-soluble dietary fiber contents increased as a result of the freeze-infusion treatment. This softening technique, which retained the food shape, could enhance the production of food products for elderly persons and those under nursing care. Foods produced by this method can replace current minced and liquid dietary components.  相似文献   

12.
利用浓硫酸-过氧化氢消煮法,研究了不同耐、感虫品种水稻分蘖期在褐飞虱侵害胁迫后根及地上部间营养成分含量的变化情况。结果表明:褐飞虱侵害协优963后3天,根及地上部N、P、K含量、6天根及地上部N含量、9天地上部N含量在60、120头/株侵害后变化不明显;6天根及地上部P含量、6天根K含量、9天地上部P含量、9天根及地上部K含量在120头/株侵害后显著下降,60头/株侵害后变化不明显;6天地上部K含量、9天根N含量在60、120头/株侵害后均显著下降。对于协优63,3天地上部N含量、3天根及地上部P含量、6天及9天地上部N、P含量在60、120头/株侵害后变化不明显;6天根N、P含量、根及地上部K含量、9天根N含量在120头/株侵害后显著下降,60头/株侵害后下降不明显;3天、9天根及地上部K含量、9天根部P含量在60、120头/株侵害后均显著下降。表明不同水稻品种体内不同营养物质含量在褐飞虱侵害后变化不同,协优63较协优963敏感;K含量变化最明显,其次为P,最后为N;而且根比地上部对褐飞虱的反应敏感。  相似文献   

13.
Fourteen cultivars of north temperate, Australian, Mexican and Rhodesian origins, were grown in eight treatments: 2-day-lengths (10 h and 14h) × two temperature regimes (18/13 °C and 25/20 °C) × two seed vernalization treatments (unvernalized and 28 days at 1–2 °C). Numbers of days to 50 % ear emergence, leaf numbers and spikelet numbers of the main shoots were recorded. The north temperate cultivars were the most sensitive to daylength: in long days their mean spikelet number was 15 and they headed in 40–50 days, while in short days they had a mean of 24 spikelets and failed to head in 100 days. The Rhodesian cultivars were the least sensitive, but nevertheless headed 20–30 days earlier and had three to five fewer spikelets per ear in long days. The effects of vernalization on the tropical cultivars were related to maturity class: they ranged from negligible in early cultivars such as Sonora 64 and Devuli to decreases of 20 days to heading and seven spikelets in late cultivars such as Mexico 120 and Cajeme 71 in long days. The effects of temperature varied with cultivar and with vernalization treatment. Early cultivars and vernalized late cultivars headed earlier and had fewer spikelets in the warmer regimes while unvernalized late cultivars tended to have more spikelets and headed later. It is suggested that some vernalization of these late cultivars took place in the cooler regime. The significance of the results for the understanding of the physiological basis of the adaptation of wheat cultivars to different climatic zones is discussed.  相似文献   

14.
阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征   总被引:27,自引:0,他引:27  
荒漠植物在水分限制、营养元素相对匮缺的条件下,经过长期的进化适应形成了自身独特的生理生态和生态化学计量特征。在阿拉善荒漠选择52个典型群落类型,分析和研究了54种荒漠植物叶片的碳、氮和磷的化学计量特征。结果表明:荒漠植物叶片的碳(C mg/g)、氮(N mg/g)和磷(P mg/g)含量变幅较大,分别为(379.01±55.42)mg/g、(10.65±7.91)mg/g和(1.04±0.81)mg/g,变异系数分别为0.15、0.74和0.78;C/N、C/P、和N/P分别为66.70±60.81、683.16±561.94、11.53±5.06。元素间相关性分析表明,叶片的C和N不相关(P0.05),C与P显著正相关(P0.05),N和P极显著正相关(P0.01)。从植物功能型的角度分析发现,灌木和1年生草本植物对C的存储能力较低;占整体67%的灌木叶片的N、P含量最低,导致总体N、P含量较低;多年生草本和1年生草本植物叶N含量与灌木植物叶片和整体N含量无差别,而P含量明显高于灌木植物叶片和整体P含量且N/P明显低于灌木植物叶片和总体N/P,导致总体N/P较低。该研究结果与全球和中国尺度的研究相比发现,荒漠植物叶片C、N、P含量和N/P明显偏低,N/P14说明阿拉善荒漠植物在受N、P共同作用的同时更易受N限制。  相似文献   

15.
The accumulation, chemical speciation and distribution of polychlorinated biphenyls (PCBs) were investigated in various parts of alfalfa. Moreover, the adsorption characteristics for PCB 28 by alfalfa and the influencing factors of the adsorption characteristics were studied. There were different degrees of PCB accumulation in alfalfa roots, root nodules and shoots. The decreasing order of the accumulation of PCBs in plant tissues was root nodules > roots > shoots, and the decreasing order of the total PCB contents was roots > shoots > root nodules, indicating that the roots were the main sink for PCB accumulation. There were three modes of PCB speciation in alfalfa roots and root nodules, comprising strong sorption (78%) and weak sorption (19%) on tissue surfaces and absorption within tissues (2%). The adsorption isotherms of PCB 28 indicate that the adsorption capacities of root nodules and shoots were both significantly higher than that of the roots. Both lipids and carbohydrates, and especially lipids, affected the PCB adsorption capacities of the tissues. These results may help in the elucidation of the mechanisms of sorption and accumulation of PCBs in the plants and their main influencing factors and thus contribute to the development of phytoremediation technologies for PCB-contaminated soils.  相似文献   

16.
Measurement of the pyrophosphate content of plant tissues   总被引:15,自引:11,他引:4       下载免费PDF全文
Pyrophosphate (PPi) was measured in pea (Pisum sativum L.) and corn (Zea mays L.) tissues by using an enzymic method based on PPi-dependent phosphofructokinase (PPi-PFK). Different organs of pea and corn seedlings were extracted to determine if PPi is present in sufficient amounts to serve as a substrate for the PPi-PFK activity in these tissues. The amount of PPi is at least 14% to 70% that of the ATP content in shoots and roots of peas and corn; and, for various plant tissues, ranges from 5 to 39 nanomoles of PPi per gram fresh tissue weight. We conclude that PPi is available as a substrate for the glycolytic function of PPi-PFK in plants. Furthermore, the presence of substrate amounts of PPi in plant tissues implies that plant energetics also must be evaluated in terms of PPi as an energy source and phosphate donor.  相似文献   

17.
High nutrient availability and defoliation generally reduce ectomycorrhizal colonization levels in trees, but it is not known how this affects the functional aspects of mycorrhizal symbiosis. It was therefore investigated whether (1) defoliation or increasing substrate N availability reduce C allocation from the plant to the fungus and N allocation from the fungus to the plant (symbiotic resource exchange), (2) symbiotic resource exchange depends on relative N and P availability, and (3) fungal N translocation to plant and plant C allocation to fungus are interdependent. Birch (Betula pendula) seedlings were grown in symbiosis with the ectomycorrhizal fungus Paxillus involutus at five times excess N, or at five times excess N and P for 6 weeks. One-half of the plants were defoliated and the plant shoots were allowed to photosynthesize 14CO2 while the fungal compartment was exposed to 14NH4. After 3 days, the 14C of plant origin in fungal tissues and 15N of fungal origin in plant tissues were quantified. Nutrient availability had no observable effect on symbiotic resource exchange in non-defoliated systems. Defoliation reduced symbiotic N acquisition by plants at all levels of nutrient availability, with the reduction being most marked at higher N availability, indicating an increased tendency in the symbiotic system to discontinue resource exchange after defoliation at higher fertility levels. The concentration of 14C in extramatrical mycelium correlated significantly with the concentration of 15N in birch shoots. The results support the assumption that N delivery to the host by the mycorrhizal fungus is dependent on C flow from the plant to the fungus, and that exchanges between the partners are reciprocal. No significant reductions in root 14C content as a response to defoliation were observed, indicating that defoliation specifically reduced allocation to fungus, but not markedly to roots.  相似文献   

18.
宋明华  陈锦  蒋婧  王枫  于飞海 《生态学报》2020,40(11):3688-3697
外源氮素(N)输入陆地生态系统后会引起植物和土壤各碳库的变化,但是对不同化学形态氮素的长期输入如何影响光合碳在植物组织、土壤、土壤呼吸中的分配及转运知之甚少,尤其是对于氮输入引起光合碳分配变化进而作用于植物和土壤碳库的机制的认识还非常匮乏。基于在青藏高原矮嵩草草甸开展的不同化学形态氮素添加的长期实验,利用~(13)C示踪方法揭示了光合碳在植物地上、地下组织的分配,及其随时间在土壤中的滞留和随土壤呼吸的释放。研究结果表明,外源氮素添加10年后,与对照未添加氮素处理相比,氨态氮处理下的地上生物量增加了49.5%,氨态氮处理下的地下生物量增加了111.3%。土壤中滞留的~(13)C整体呈下降趋势,氨态氮处理下的土壤碳库显著高于硝态氮处理下的值。不同处理下的土壤呼吸中~(13)C的滞留量随时间呈指数衰减的变化趋势,其中,硝态氮处理下的~(13)C衰减最快。~(13)C同位素标记后第1天测定植物茎和叶内的~(13)C约占刚刚标定完茎和叶内~(13)C的80%,不同处理之间没有显著性差异。直至标记后的第30天,茎和叶内~(13)C的滞留量约占初始量的30%。硝态氮处理下的值在第21天和第30天显著低于对照和氨态氮处理下的值,表明硝态氮处理下,植物光合固定的碳在短期内迅速输入地下组织和土壤中。这些结果从机理上阐明了植物光合碳分配对不同化学形态氮素长期输入的响应,进而影响到土壤呼吸CO_2的释放,以及对土壤碳库动态的贡献。加深了对高寒草甸土壤有机碳库稳定性维持机制的认识,能够为高寒草地的科学管理以及资源的可持续利用提供理论指导。  相似文献   

19.
Increased concentrations of atmospheric carbon dioxide (CO2) and drought stress have greatly influenced plant growth, the status of nitrogen (N) and phosphorus (P), and N:P ratios. We identified the plant biomass, N and P distributional patterns, and N:P stoichiometry of a grass species on the Loess Plateau in China under elevated CO2 concentration and drought stress conditions. Bothriochloa ischaemum, a C4 perennial herbaceous grass, was grown in pots at CO2 concentrations of 400 (ambient) and 800 (elevated) μmol mol?1 and at 60 ± 5 and 40 ± 5 % of field capacity. The elevated CO2 concentration significantly increased plant total biomass, N concentration, N and P content, allocation of biomass to roots, and allocation of N to shoots, and increased the N:P ratios of whole plants and the shoots, especially under well-watered conditions. Drought stress significantly decreased plant biomass and plant N and P content, especially under elevated CO2. Drought stress decreased the N:P ratios, but was only significant in the roots under ambient CO2. Drought stress may attenuate the stimulation of plant growth and N and P acquisition by CO2 enrichment, and projected elevated CO2 concentrations may partially offset the negative effects of increased drought by increasing the assimilation of N and P.  相似文献   

20.
 The nutrient concentrations and contents of needles and shoots of 22-year-old European larch (Larix decidua Mill.) were evaluated with respect to crown position, age of tissues and sampling date during a complete growing season. Concentrations of N, P, K, Ca, Mg and Zn in the needles and of N, P and K in the shoots differed significantly among the dates of sampling. The concentrations of N and Mn in the needles and all nutrients in the shoots (except Mg) also differed significantly with crown position. Maximum needle biomass was observed in the middle crown position (55% of the total) and maximum shoot biomass, in the lower crown position (52% of the total). Maximum needle and shoot nutrient contents were observed in the middle position of the living crown for long shoot, short shoot-1, short shoot-2, short shoot-3 and, short shoot-4 age classes while highest contents for short shoot-5 and short shoot-6 age classes were observed in the lower crown position. Biases up to 42% for Mg in the needles and 200% for K in the shoots were obtained when only long shoot tissues are used for content evaluation. For needles and shoots, Mg and K are more difficult nutrients to evaluate. A sampling methodology is proposed for evaluating nutrient contents of the living crown. Accepted: 10 August 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号