首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Twenty-one suppressor gene mutations which suppress the met-5.1 missense mutation of Coprinus were separated into six groups (A-F) on the basis of dominance or recessiveness, linkage to the met-5 locus, comlementation in heterozygous cells and growth behaviour. The actual number of suppressor loci could not be determined because crosses between suppressed mutants were inviable. The allele specificity of group A, C, D and F suppressors was confirmed by appropriate crosses. Group B and E suppressors were not tested because of close linkage to the met-5 locus. No evidence for functional suppression of met-5 mutations was obtained thus it is likely that all the suppressors cause translational corelation of met-5.1. Suppressors in four groups (C-F) have properties expected of tRNA structural gene mutations: the group C mutation is dominant, the other mutations are recessive but do not complement in heterozygous cells. The relative efficiencies of the tRNA species involved was assessed by comparing the degree to which the different sup + mutations depressed the growth rate on methionine supplemented medium. The dominant mutation depressed growth to the greatest extent and is, therefore, the most efficient suppressor. The least efficient suppressors did not depress growth at all. When growth was compared on minimal medium it was found that the more efficient the suppressor the less well it restored growth. The mutations in groups A and B depressed growth more than the tRNA mutations but affect some other component in translation because they are recessive and complement normally. It is suggested that they may act to alter tRNA modifying enzymes.  相似文献   

2.
We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.  相似文献   

3.
Novel nematode amber suppressors   总被引:8,自引:3,他引:5       下载免费PDF全文
Hodgkin J 《Genetics》1985,111(2):287-310
Nine amber suppressor mutations were isolated in the nematode Caenorhabditis elegans by reverting amber alleles of a sex-determining gene, tra-3. One suppressor maps to a known locus, sup-5 III , but the other eight map to three new loci, sup-21 X (five alleles), sup-22 IV (two alleles) and sup-23 IV (one allele). Amber alleles of tra-3 and of a dumpy gene, dpy-20, were used to measure the efficiency of suppression; the sup-21 and the sup-22 alleles were both shown to be heterogeneous and generally weaker suppressors than sup-5 alleles, which are homogeneous. The spectrum of mutations suppressed by a strong sup-21 allele, e1957, was investigated and compared to the spectra for the amber suppressors sup-5 III and sup-7 X, using amber alleles in 13 assorted genes. Some of the differences between these spectra may be due to limited tissue specificity in sup-21 expression.—Suppression of dpy-20 was used to show that the sex-linked suppressors sup-7 and sup-21 are not dosage compensated in male (XO) relative to hermaphrodite (XX).—Several uses of amber suppressors are critically discussed: for identifying null mutations, for varying levels of gene activity and for detecting maternal mRNA.  相似文献   

4.
A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17. Two of the suppressors (sup-1 and sup-8/snb-1) have previously been shown to encode synaptic proteins able to interact directly with UNC-17. We found that the remaining suppressor, sup-2, corresponds to a mutation in erd-2.1, which encodes an endoplasmic reticulum retention protein; sup-2 causes a V186E missense mutation in transmembrane helix 7 of ERD-2.1. The same missense change introduced into the redundant paralogous gene erd-2.2 also suppressed unc-17(e245). Suppression presumably occurred by compensatory charge interactions between transmembrane helices of UNC-17 and ERD-2.1 or ERD-2.2, as previously proposed in work on suppression by SUP-1(G84E) or SUP-8(I97D)/synaptobrevin. erd-2.1(V186E) homozygotes were fully viable, but erd-2.1(V186E); erd-2.2(RNAi) exhibited synthetic lethality [like erd-2.1(RNAi); erd-2.2(RNAi)], indicating that the missense change in ERD-2.1 impairs its normal function in the secretory pathway but may allow it to adopt a novel moonlighting function as an unc-17 suppressor.  相似文献   

5.
Indirect Suppression in CAENORHABDITIS ELEGANS   总被引:12,自引:4,他引:8       下载免费PDF全文
Two cases of indirect suppression have been characterized. One case involves suppressors compensating for defects in muscle structure. Nine independent suppressor mutations were judged to lie in a single suppressor gene, sup-3. Suppression is dominant, but dose dependent, and results in improved locomotion, as well as in an increase in the ability of mutant animals to lay eggs. Mutations in six genes known to affect muscle structure were tested for suppression by representative sup-3 mutations. Alleles of three of the six genes are suppressed, two of which are known to code for thick filament proteins. One suppressor allele was identified as a deletion by genetic criteria. A second case of indirect suppression is not associated with muscle defects, but involves two mutant genes producing uncoordinated phenotypes very similar to one another. As in the first case, suppression is dominant but dose dependent and is not allele specific.  相似文献   

6.
The sup-11 I locus of C. elegans was defined by rare dominant suppressors of unc-93(e1500) III, a mutation that affects muscle structure. All ten of these dominant suppressors have a recessive "scrawny" phenotype. Two additional classes of sup-11 alleles were identified. One class, null alleles, was obtained by reversion of the dominant suppressor activity. These null alleles are recessive embryonic lethals, indicating that sup-11 is an essential gene. Members of the second class, rare semidominant revertants of the "scrawny" phenotype, are partial suppressors of unc-93(e1500). The genetic properties of the dominant suppressor mutations suggest that they are rare missense mutations that confer a novel activity to the sup-11 protein. We consider some of the ways that sup-11 alleles might suppress unc-93(e1500), including the possibilities that the altered sup-11 proteins restore function to a protein complex or are modified products of a gene that is a member of an unc-93 gene family.  相似文献   

7.
Summary A series of temperature-resistant revertants were isolated from strains of Escherichia coli K12 carrying a temperature-sensitive mutation in the dnaA gene. Four independent revertants were found which still carry the original ts mutation. The ability of these strains to grow at high temperature is due to a suppressor mutation, called sin. All four sin mutations are located between the genes metD and proA on the genetic map of E. coli, which suggests that they all affect the same gene. The sin suppressors, which were isolated for their ability to suppress one dnaA mutation, are also able to suppress three other temperature-sensitive dnaA mutations, but they are not able to suppress mutations in either of the two genes dnaB or dnaC. The sin suppressors alone do not confer any particular phenotype on bacteria, but they are deficient in the enzyme RNase H. On the basis of these findings we propose that the function of the dnaA protein is to protect a DNA-RNA hybrid at the origin of replication against RNase H.  相似文献   

8.
Summary The acu-1 locus in Coprinus is the structural gene for acetyl-CoA synthetase. Five suppressor gene mutations, which suppress the acu-1,34 missense allele, were induced by mutagen treatment. All five suppressors were shown to have properties expected for tRNA structural gene mutations: they are recessive, they show a gene dosage effect in any doubly heterozygous combination of two sup + mutations and they are allele specific in action.Crosses between suppressed mutants established that at least four suppressor loci were represented. Doubly suppressed mutants derived from these crosses were used to show that the gene dosage effect is maintained when two sup + mutations are in cis as well as trans combinations in the two nuclei of the basidiomycete dikaryon.Extracts of the unsuppressed acu-1.34 mutant contained less than 2% of wild type acetyl-CoA synthetase activity whereas extracts of four of the five suppressor strains showed activities ranging from 28 to 37% of wild type. Only a slight increase in activity was detected in the fifth suppressor strain but this was associated with a temperature sensitive sup + phenotype. All five sup + mutations restored the ability of the acu-1.34 mutant to induce isocitrate lyase, an enzyme which, under the conditions of growth used, can only be induced when acetyl-CoA synthetase activity is present. Thus all five suppressors act to restore normal acu-1 protein function.  相似文献   

9.
A Second Informational Suppressor, SUP-7 X, in CAENORHABDITIS ELEGANS   总被引:15,自引:14,他引:1  
More than 30 independent suppressor mutations have been obtained in the nematode C. elegans through reversion analysis of two unc-13 mutants. Many of the new isolates map to the region of the previously identified informational suppressor, sup-5 III (Waterston and Brenner 1978). Several of the other suppressor mutations map to the left half of the X-linkage group and define a second suppressor gene, sup-7 X. In tests against 40 mutations in six genes, the sup-7(st5) allele was found to suppress to a greater extent the same alleles acted on by sup-5(e1464). Like sup-5(e1464), sup-7(st5) acts on null alleles of the myosin heavy-chain gene unc-54 I (MacLeod et al. 1977; MacLeod, Waterston and Brenner 1977) and the putative paramyosin gene unc-15 I (Waterston et al. 1977). Chemical analysis of unc-15(e1214); sup-7(st5) animals show that paramyosin is restored to more than 30% of the wild-type level.—As was observed for sup-5(e1464), suppression by sup-7(st5) is dose dependent and is greater in animals grown at 15° than at 25°. However, associated with this increased suppression is a decreased viability of sup-7(st5) homozygotes. Reversion of the lethality has resulted in the isolation of deficiency mutations that complement st5 lethality, but lack suppressor function. These properties of sup-7(st5) suggest that it, like sup-5(e1464), is an informational suppressor of null alleles, and its reversion via deficiencies further narrows the possible explanations of its action.  相似文献   

10.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal. Received: 19 August 1997 / Accepted: 11 December 1997  相似文献   

11.
A New Kind of Informational Suppression in the Nematode Caenorhabditis Elegans   总被引:16,自引:6,他引:10  
J. Hodgkin  A. Papp  R. Pulak  V. Ambros    P. Anderson 《Genetics》1989,123(2):301-313
Independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors. Mutations at any one of six loci act as allele-specific recessive suppressors of certain allels of unc-54 (a myosin heavy chain gene), lin-29 (a heterochronic gene), and tra-2 (a sex determination gene). The same mutations also suppress certain alleles of another sex determination gene, tra-1, and of a morphogenetic gene, dpy-5. In addition to their suppression phenotype, the suppressor mutations cause abnormal morphogenesis of the male bursa and the hermaphrodite vulva. We name these genes smg-1 through smg-6 (suppressor with morphogenetic effect on genitalia), in order to distinguish them from mab (male abnormal) genes that can mutate to produce abnormal genitalia but which do not act as suppressors (smg-1 and smg-2 are new names for two previously described genes, mab-1 and mab-11). The patterns of suppression, and the interactions between the different smg genes, are described and discussed. In general, suppression is recessive and incomplete, and at least some of the suppressed mutations are hypomorphic in nature. A suppressible allele of unc-54 contains a deletion in the 3' noncoding region of the gene; the protein coding region of the gene is apparently unaffected. This suggests that the smg suppressors affect a process other than translation, for example mRNA processing, transport, or stability.  相似文献   

12.
We have isolated a dominant suppressor of rna mutation (SRN1) that relieves the temperature-sensitive inhibition of mRNA synthesis of ribosomal protein genes in the yeast Saccharomyces cerevisiae. The suppressor was selected for its ability to alleviate simultaneously the temperature-sensitive growth phenotypes of rna2 and rna6. Several independently isolated suppressors appeared to be recessive lethal mutations. One suppressor, SRN1, was recovered as viable in haploid strains. SRN1 can suppress rna2, rna3, rna4, rna5, rna6, and rna8 singly or in pairs, although some combinations of rna mutations are less well suppressed than others. The suppressor allows strains with rna mutations to grow at 34 degrees C but is unable to suppress at 37 degrees C; however, SRN1 does not, by itself, prevent growth at 37 degrees C. In addition, SRN1 suppresses the rna1 mutation which affects general mRNA levels and also leads to the accumulation of precursor tRNA for those tRNAs that have intervening sequences. SRN1 can suppress the rna1 mutation as well as the rna1 rna2 double mutation at 34 degrees C. The suppressor does not affect the temperature-sensitive growth of two unrelated temperature-sensitive mutations, cdc4 and cdc7.  相似文献   

13.
Summary In Saccharomyces cerevisiae ochre and opal, as well as amber mutations are known, whereas in the fission yeast Schizosaccharomyces pombe no amber alleles have been described. We have characterized trp1-566, an amber allele in the trp1 locus of S. pombe. The identification of trp1-566 as an amber allele is based on the following results: (a) The nonsense allele can be converted to an ochre allele by nitrosoguanidine mutagenesis. (b) trp1-566 is suppressed by a bona fide S. pombe amber suppressor tRNA, supSI. The supSI gene was obtained by primer-directed in vitro mutagenesis of a tRNASer from S. pombe. Unexpectedly, an S. cerevisiae amber suppressor tRNASer, supR21, transformed into S. pombe, failed to suppress trp1-566. Northern analysis of S. pombe transformants, containing supRL1 or S. cerevisiae tRNALeu or tRNATyr genes reveals that these genes are not transcribed in the fission yeast. As an additional tool for the analysis of nonsense mutations in S. pombe, we obtained by nitrosoguanidine mutagenesis two unlinked amber suppressor alleles, sup13 and sup14, which act on trp1-566.  相似文献   

14.
 The fab2-1 mutant of Arabidopsis is an extreme dwarf as a direct result of an increase in the levels of stearate (18 : 0) in membrane lipids. We isolated a series of lines in which second-site suppressor mutations partly alleviate the dwarf phenotype. In all four of the suppressor lines examined, restoration of more normal morphology is accompanied by decreases in leaf 18 : 0 content. Three of the isolated suppressors suppress the high stearate phenotype in both leaves and seeds. The effects of one of the suppressors, TW2-1, is limited to the leaves. A second allele at the fab2 locus, fab2-2, was also identified and plants homozygous for this allele where intermediate in both plant size and 18 : 0 content between wild-type Arabidopsis and fab2-1 mutants. The alleles at fab2 and the suppressor mutations provided a total of nine genotypes which were analyzed to demonstrate a clear-cut relationship between leaf 18 : 0 content (0.7–19.6% of total leaf fatty acids) and reductions in plant size (24–4 mm). These results illustrate the utility of suppressor analysis for addressing problems in biochemistry and plant biology. They also indicate that the genetic control of plant lipid composition is more complex than previously appreciated. Received: 24 January 1997 / Accepted: 14 February 1997  相似文献   

15.
We isolated defective specialized transducing phages of SP beta that carry one of the extracistronic suppressors, sup-3 or sup-44. Lysates containing these phages can be used in a simple spot test to determine whether an auxotrophic mutation can be suppressed. The sup-3 and sup-44 mutations are distinct, in that their suppression patterns differ for the markers hisA1, metC3, and thr-5; and they are not alleles.  相似文献   

16.
17.
Summary In the preceding paper of this series (Dujardin et al. 1980a) we described general methods of selecting and genetically characterizing suppressor mutations that restore the respiratory capacity of mit - mitochondrial mutations. Two dominant nuclear (NAM1-1 and NAM2-1) and one mitochondrial (mim2-1) suppressors are more extensively studied in this paper. We have analysed the action spectrum of these suppressors on 433 mit - mutations located in various mitochondrial genes and found that they preferentially alleviate the effects of mutations located within intron open reading frames of the cob-box gene. We conclude that these suppressors permit the maturation of cytochrome b mRNA by restoring the synthesis of intron encoded protein(s) catalytically involved in splicing i.e. mRNA-maturase(s) (cf. Lazowska et al. 1980). NAM1-1 is allele specific and gene non-specific: it suppresses mutations located within different introns. NAM2-1 and mim2-1 are intron-specific: they suppress mutations all located in the same (box7) intron of the cobbox gene. Analyses of cytochrome absorption spectra and mitochondrial translation products of cells in which the suppressors are associated with various other mit - mutations show that the suppressors restore cytochrome b and/or cytochrome oxidase (cox 1) synthesis, as expected from their growth phenotype. This suppression is, however, only partial: some new polypeptides characteristic of the mit - mutations can be still detected in the presence of suppressor. Interestingly enough when box7 specific suppressors NAM2-1 and mim2-1 are associated with a complete cob-box deletion (leading to a total deficiency of cytochrome b and oxidase) partial restoration of cox I synthesis is observed while cytochrome b is still totally absent. These results show that in strains carrying NAM2-1 or mim2-1 the presence of cytochrome b gene is no longer required for the expression of the oxi3 gene pointing out to the possibility of a mutational switch-on of silent genes, whether mitochondrial, mim2-1, or nuclear, NAM2-1. This switch-on would permit the synthesis of an active maturase acting as a substitute for the box7 maturase in order to splice the cytochrome b and oxidase mRNAs.  相似文献   

18.
Summary By mutagenizing an E. coli strain carrying an amber suppressor supD - (or su I +), we isolated a mutant whose amber suppressor activity was now temperature-sensitive. The mutant suppressor gene was named sup-126, which was found to be cotransduced with the his gene by phage P1vir at the frequency of ca. 20%. At 30° C it suppresses many amber mutations of E. coli, phage T4, and phage . At 42° C, however, it can suppress none of over 30 amber mutations tested so far. The sup-126 mutation is unambiguous and stable enough to be useful for making production of an amber protein temperature-sensitive.  相似文献   

19.
S. W. James  P. A. Lefebvre 《Genetics》1992,130(2):305-314
We previously described two types of genetic interactions among recessive mutations in the APM1 and APM2 loci of Chlamydomonas reinhardtii that may reflect a physical association of the gene products or their involvement in a common structure/process: (1) allele-specific synthetic lethality, and (2) unlinked noncomplementation, or dominant enhancement. To further investigate these interactions, we isolated revertants in which the heat sensitivity caused by the apm2-1 mutation is lost. The heat-insensitive revertants were either fully or partially suppressed for the drug-resistance caused by the apm2-1 allele. In recombination tests the revertants behaved as if the suppressing mutation mapped within the APM2 locus; the partial suppressors of apm2-1 herbicide resistance failed to complement apm2-1, leading to the conclusion that they were likely to be intragenic pseudorevertants. The apm2-1 partial suppressor mutations reversed apm1-apm2-1 synthetic lethality in an allele-specific manner with respect both to apm1- alleles and apm2-1 suppressor mutations. Those apm1- apm2-1rev strains that regained viability also regained heat sensitivity characteristic of the original apm2-1 mutation, even though the apm2-1 suppressor strains were fully heat-insensitive. The Hs+ phenotypes of apm2-1 partial suppressors were also reversed by treatment with the microtubule-stabilizing agent deuterium oxide (D2O). In addition to the above interactions, we observed interallelic complementation and phenotypic enhancement of temperature conditionality among apm1- alleles. Evidence of a role for the products of the two genes in microtubule-based processes was obtained from studying flagellar assembly in apm1- and apm2- mutants.  相似文献   

20.
J H Yu  S Rosén  T H Adams 《Genetics》1999,151(1):97-105
We showed previously that two genes, fl bA and fadA, have a major role in determining the balance between growth, sporulation, and mycotoxin (sterigmatocystin; ST) production by the filamentous fungus Aspergillus nidulans. fadA encodes the alpha subunit for a heterotrimeric G-protein, and continuous activation of FadA blocks sporulation and ST production while stimulating growth. fl bA encodes an A. nidulans regulator of G-protein signaling (RGS) domain protein that antagonizes FadA-mediated signaling to allow development. To better understand FlbA function and other aspects of FadA-mediated growth control, we have isolated and characterized mutations in four previously undefined genes designated as sfaA, sfaC, sfaD, and sfaE (suppressors of flbA), and a new allele of fadA (fadAR205H), all of which suppress a fl bA loss-of-function mutation ( fl bA98). These suppressors overcome fl bA losses of function in both sporulation and ST biosynthesis. fadAR205H, sfaC67, sfaD82, and sfaE83 mutations are dominant to wild type whereas sfaA1 is semidominant. sfaA1 also differs from other suppressor mutations in that it cannot suppress a fl bA deletion mutation (and is therefore allele specific) whereas all the dominant suppressors can bypass complete loss of fl bA. Only sfaE83 suppressed dominant activating mutations in fadA, indicating that sfaE may have a unique role in fadA- fl bA interactions. Finally, none of these suppressor mutations bypassed fl uG loss-of-function mutations in development-specific activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号