首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
‘Indirect readout’ refers to the proposal that proteins can recognize the intrinsic three-dimensional shape or flexibility of a DNA binding sequence apart from direct protein contact with DNA base pairs. The differing affinities of human papillomavirus (HPV) E2 proteins for different E2 binding sites have been proposed to reflect indirect readout. DNA bending has been observed in X-ray structures of E2 protein–DNA complexes. X-ray structures of three different E2 DNA binding sites revealed differences in intrinsic curvature. DNA sites with intrinsic curvature in the direction of protein-induced bending were bound more tightly by E2 proteins, supporting the indirect readout model. We now report solution measurements of intrinsic DNA curvature for three E2 binding sites using a sensitive electrophoretic phasing assay. Measured E2 site curvature agrees well the predictions of a dinucleotide model and supports an indirect readout hypothesis for DNA recognition by HPV E2.  相似文献   

2.
The bacteriophage 434 repressor distinguishes between its six naturally occurring binding sites using indirect readout. In indirect readout, sequence-dependent differences in the structure and flexibility of non-contacted bases in a protein's DNA-binding site modulate the affinity of DNA for protein. The conformation and flexibility of a DNA sequence can be influenced by the interaction of the DNA bases or backbone with solution components. We examined the effect of changing the cation-type present in solution on the stability and structure of 434 repressor complexes with wild-type and mutant OR1 and OR3, binding sites that differ in their contacted and non-contacted base sequences. We find that the affinity of repressor for OR1, but not for OR3, depends remarkably on the type and concentration of monovalent cation. Moreover, the formation of a stable, specific repressor-OR1 complex requires the presence of monovalent cations; however, repressor-OR3 complex formation has no such requirement. Changing monovalent cation type alters the ability of repressor to protect OR1, but not OR3, from *OH radical cleavage. Altering the relative length of the poly(dA) x poly(dT) tract in the non-contacted regions of the OR1 and OR3 can reverse the cation sensitivity of repressor's affinities for these two sites. Taken together these findings show that cation-dependent alterations in DNA structure underlies indirect readout of DNA sequence by 434 repressor and perhaps other proteins.  相似文献   

3.
Integration host factor (IHF) is a DNA-bending protein that recognizes its cognate sites through indirect readout. Previous studies have shown that binding of wild-type (WT)-IHF is disrupted by a T to A mutation at the center position of a conserved TTR motif in its binding site, and that substitution of betaGlu44 with Ala prevented IHF from discriminating between A and T at this position. We have determined the crystal structures and relative binding affinities for all combinations of WT-IHF and IHF-betaGlu44Ala bound to the WT and mutant DNAs. Comparison of these structures reveals that DNA twist plays a major role in DNA recognition by IHF, and that this geometric parameter is dependent on the dinucleotide step and not on the bound IHF variant.  相似文献   

4.
The repressor of bacteriophage P22 (P22R) discriminates between its various DNA binding sites by sensing the identity of non-contacted base pairs at the center of its binding site. The “indirect readout” of these non-contacted bases is apparently based on DNA's sequence-dependent conformational preferences. The structures of P22R–DNA complexes indicate that the non-contacted base pairs at the center of the binding site are in the B′ state. This finding suggests that indirect readout and therefore binding site discrimination depend on P22R's ability to either sense and/or impose the B′ state on the non-contacted bases of its binding sites. We show here that the affinity of binding sites for P22R depends on the tendency of the central bases to assume the B′-DNA state. Furthermore, we identify functional groups in the minor groove of the non-contacted bases as the essential modulators of indirect readout by P22R. In P22R–DNA complexes, the negatively charged E44 and E48 residues are provocatively positioned near the negatively charged DNA phosphates of the non-contacted nucleotides. The close proximity of the negatively charged groups on protein and DNA suggests that electrostatics may play a key role in the indirect readout process. Changing either of two negatively charged residues to uncharged residues eliminates the ability of P22R to impose structural changes on DNA and to recognize non-contacted base sequence. These findings suggest that these negatively charged amino acids function to force the P22R-bound DNA into the B′ state and therefore play a key role in indirect readout by P22R.  相似文献   

5.
DNA sequence recognition by the homodimeric C-terminal domain of the human papillomavirus type 16 E2 protein (E2C) is known to involve both direct readout and DNA-dependent indirect readout mechanisms, while protein-dependent indirect readout has been deduced but not directly observed. We have investigated coupling between specific DNA binding and the dynamics of the unusual E2C fold, using pH as an external variable. Nuclear magnetic resonance and isothermal titration calorimetry show that pH titration of His318 in the complex interface and His288 in the core of the domain is coupled to both binding and the dynamics of the β-barrel core of E2C, with a tradeoff between dimer stability and function. Specific DNA binding is, in turn, coupled to the slow dynamics and amide hydrogen exchange in the entire β-barrel, reaching residues far apart from the DNA recognition elements but not affecting the two helices of each monomer. The changes are largest in the dimerization interface, suggesting that the E2C β-barrel acts as a hinge that regulates the relative position of the DNA recognition helices. In conclusion, the cooperative dynamics of the human papillomavirus type 16 E2C β-barrel is coupled to sequence recognition in a protein-dependent indirect readout mechanism. The patterns of residue substitution in genital papillomaviruses support the importance of the protonation states of His288 and His318 and suggest that protein-dependent indirect readout and histidine pH titration may regulate DNA binding in the cell.  相似文献   

6.
7.
Protein-DNA recognition plays an essential role in the regulation of gene expression. Regulatory proteins are known to recognize specific DNA sequences directly through atomic contacts (intermolecular readout) and/or indirectly through the conformational properties of the DNA (intramolecular readout). However, little is known about the respective contributions made by these so-called direct and indirect readout mechanisms. We addressed this question by making use of information extracted from a structural database containing many protein-DNA complexes. We quantified the specificity of intermolecular (direct) readout by statistical analysis of base-amino acid interactions within protein-DNA complexes. The specificity of the intramolecular (indirect) readout due to DNA was quantified by statistical analysis of the sequence-dependent DNA conformation. Systematic comparison of these specificities in a large number of protein-DNA complexes revealed that both intermolecular and intramolecular readouts contribute to the specificity of protein-DNA recognition, and that their relative contributions vary depending upon the protein-DNA complexes. We demonstrated that combination of the intermolecular and intramolecular energies derived from the statistical analyses lead to enhanced specificity, and that the combined energy could explain experimental data on binding affinity changes caused by base mutations. These results provided new insight into the relationship between specificity and structure in the process of protein-DNA recognition, which would lead to prediction of specific protein-DNA binding sites.  相似文献   

8.
Proteins recognize a specific DNA sequence not only through direct contact (direct readout) with base pairs but also through sequence-dependent conformation and/or flexibility of DNA (indirect readout). However, it is difficult to assess the contribution of indirect readout to the sequence specificity. What is needed is a straightforward method for quantifying its contributions to specificity. Using Bayesian statistics, we derived the probability of a particular sequence for a given DNA structure from the trajectories of molecular dynamics (MD) simulations of DNAs containing all possible tetramer sequences. Then, we quantified the specificity of indirect readout based on the information entropy associated with the probability. We tested this method with known structures of protein-DNA complexes. This method enabled us to correctly predict those regions where experiments suggested the involvement of indirect readout. The results also indicated new regions where the indirect readout mechanism makes major contributions to the recognition. The present method can be used to estimate the contribution of indirect readout without approximations to the distributions in the conformational ensembles of DNA, and would serve as a powerful tool to study the mechanism of protein-DNA recognition.  相似文献   

9.
The genome of the Lyme disease-causing spirochete Borrelia burgdorferi encodes only a single polypeptide from the integration host factor (IHF)/HU or 'DNABII' family of nucleoid-associated proteins - Hbb. DNABII proteins induce large bends in DNA and serve as architectural factors in a variety of prokaryotic cellular processes. We have solved the crystal structure of an Hbb-DNA complex in which the DNA is bent by over 180 degrees . We find that like IHF, Hbb relies exclusively on indirect readout to recognize its cognate site. Additional binding studies show that the sequence preferences of Hbb are related to, yet distinct from those of IHF. Defining these binding characteristics may help to uncover additional roles for Hbb in Borrelia DNA metabolism as well as further our understanding of the mechanism of indirect readout.  相似文献   

10.
11.
How DNA-bending proteins recognize their specific sites on DNA remains elusive, particularly for proteins that use indirect readout, which relies on sequence-dependent variations in DNA flexibility/bendability. The question remains as to whether the protein bends the DNA (protein-induced bending) or, alternatively, "prebent" DNA conformations are thermally accessible, which the protein captures to form the specific complex (conformational capture). To distinguish between these mechanisms requires characterization of reaction intermediates and, in particular, snapshots of the transition state along the recognition pathway. We present such a snapshot, from measurements of DNA bending dynamics in complex with Escherichia coli integration host factor (IHF), an architectural protein that bends specific sites on λ-DNA in a U-turn by creating two sharp kinks in DNA. Fluorescence resonance energy transfer measurements in response to laser temperature-jump perturbation monitor DNA bending. We find that nicks or mismatches that enhance DNA flexibility at the site of the kinks show 3- to 4-fold increase in DNA bending rates that reflect a 4- to 11-fold increase in binding affinities, while sequence modifications away from the kink sites, as well as mutations in IHF designed to destabilize the complex, have negligible effect on DNA bending rates despite >250-fold decrease in binding affinities. These results support the scenario that the bottleneck in the recognition step for IHF is spontaneous kinking of cognate DNA to adopt a partially prebent conformation and point to conformational capture as the underlying mechanism of initial recognition, with additional protein-induced bending occurring after the transition state.  相似文献   

12.
13.
DNA-binding drugs have numerous applications in the engineered gene regulation. However, the drug-DNA recognition mechanism is poorly understood. Drugs can recognize specific DNA sequences not only through direct contacts but also indirectly through sequence-dependent conformation, in a similar manner to the indirect readout mechanism in protein-DNA recognition. We used a knowledge-based technique that takes advantage of known DNA structures to evaluate the conformational energies. We built a dataset of non-redundant free B-DNA crystal structures to calculate the distributions of adjacent base-step and base-pair conformations, and estimated the effective harmonic potentials of mean force (PMF). These PMFs were used to calculate the conformational energy of drug-DNA complexes, and the Z-score as a measure of the binding specificity. Comparing the Z-scores for drug-DNA complexes with those for free DNA structures with the same sequence, we observed that in several cases the Z-scores became more negative upon drug binding. Furthermore, the specificity is position-dependent within the drug-bound region of DNA. These results suggest that DNA conformation plays an important role in the drug-DNA recognition. The presented method provides a tool for the analysis of drug-DNA recognition and can facilitate the development of drugs for targeting a specific DNA sequence.  相似文献   

14.
The combined biochemical and structural study of hundreds of protein-DNA complexes has indicated that sequence-specific interactions are mediated by two mechanisms termed direct and indirect readout. Direct readout involves direct interactions between the protein and base-specific atoms exposed in the major and minor grooves of DNA. For indirect readout, the protein recognizes DNA by sensing conformational variations in the structure dependent on nucleotide sequence, typically through interactions with the phosphodiester backbone. Based on our recent structure of Ndt80 bound to DNA in conjunction with a search of the existing PDB database, we propose a new method of sequence-specific recognition that utilizes both direct and indirect readout. In this mode, a single amino acid side-chain recognizes two consecutive base-pairs. The 3'-base is recognized by canonical direct readout, while the 5'-base is recognized through a variation of indirect readout, whereby the conformational flexibility of the particular dinucleotide step, namely a 5'-pyrimidine-purine-3' step, facilitates its recognition by the amino acid via cation-pi interactions. In most cases, this mode of DNA recognition helps explain the sequence specificity of the protein for its target DNA.  相似文献   

15.
De Vuyst G  Aci S  Genest D  Culard F 《Biochemistry》2005,44(30):10369-10377
The MC1 protein is a chromosomal protein likely involved in the DNA compaction of some methanogenic archaea. This small and monomeric protein, structurally unrelated to other DNA binding proteins, bends DNA sharply. By studying the protein binding to various kinds of kinked DNA, we have previously shown that MC1 is able to discriminate between different deformations of the DNA helix. Here we investigate its capacity to recognize particular DNA sequences by using a SELEX procedure. We find that MC1 is able to preferentially bind to a 15 base pair motif [AAAAACACAC(A/C)CCCC]. The structural parameters of this sequence are characterized by molecular dynamics simulation experiments, and the binding mode of the protein to the DNA is studied by footprinting experiments. Our results strongly suggest that the protein realizes an indirect readout of the DNA sequence by binding to the DNA minor groove.  相似文献   

16.
The TATA box-binding protein (TBP) recognizes its target sites (TATA boxes) by indirectly reading the DNA sequence through its conformation effects (indirect readout). Here, we explore the molecular mechanisms underlying indirect readout of TATA boxes by TBP by studying the binding of TBP to adenovirus major late promoter (AdMLP) sequence variants, including alterations inside as well as in the sequences flanking the TATA box. We measure here the dissociation kinetics of complexes of TBP with AdMLP targets and, by phase-sensitive assay, the intrinsic bending in the TATA box sequences as well as the bending of the same sequence induced by TBP binding. In these experiments we observe a correlation of the kinetic stability to sequence changes within the TATA recognition elements. Comparison of the kinetic data with structural properties of TATA boxes in known crystalline TBP/TATA box complexes reveals several "signals" for TATA box recognition, which are both on the single base-pair level, as well as larger DNA tracts within the TATA recognition element. The DNA bending induced by TBP on its binding sites is not correlated to the stability of TBP/TATA box complexes. Moreover, we observe a significant influence on the kinetic stability of alteration in the region flanking the TATA box. This effect is limited however to target sites with alternating TA sequences, whereas the AdMLP target, containing an A tract, is not influenced by these changes.  相似文献   

17.
18.
Integration host factor (IHF) is a bacterial histone-like protein whose primary biological role is to condense the bacterial nucleoid and to constrain DNA supercoils. It does so by binding in a sequence-independent manner throughout the genome. However, unlike other structurally related bacterial histone-like proteins, IHF has evolved a sequence-dependent, high affinity DNA-binding motif. The high affinity binding sites are important for the regulation of a wide range of cellular processes. A remarkable feature of IHF is that it employs an indirect readout mechanism to bind and wrap DNA at both the nonspecific and high affinity (sequence-dependent) DNA sites. In this study we assessed the contributions of pre-formed and protein-induced DNA conformations to the energetics of IHF binding. Binding energies determined experimentally were compared with energies predicted for the IHF-induced deformation of the DNA helix (DNA deformation energy) in the IHF-DNA complex. Combinatorial sets of de novo DNA sequences were designed to systematically evaluate the influence of sequence-dependent structural characteristics of the conserved IHF recognition elements of the consensus DNA sequence. We show that IHF recognizes pre-formed conformational characteristics of the consensus DNA sequence at high affinity sites, whereas at all other sites relative affinity is determined by the deformational energy required for nearest-neighbor base pairs to adopt the DNA structure of the bound DNA-IHF complex.  相似文献   

19.
20.
In this study, we established a single nucleotide mutation matrix (SNMM) model based on the relative binding affinities of NF-κB p50 homodimer to a wild-type binding site (GGGACTTTCC) and its all single-nucleotide mutants detected with the double-stranded DNA microarray. We evaluated this model by scoring different groups of 10-bp DNA sequences with this model and analyzing the correlations between the scores and the relative binding affinities detected with three wet experiments, including the electrophoresis mobility shift assay (EMSA), the protein-binding microarray (PBM) and the systematic evolution of ligands by exponential enrichment-sequencing (SELEX-Seq). The results revealed that the SNMM scores were strongly correlated with the detected binding affinities. We also scored the DNA sequences with other three models, including the principal coordinate (PC) model, the position weight matrix scoring algorithm (PWMSA) model and the Match model, and analyzed the correlations between the scores and the detected binding affinities. In comparison with these models, the SNMM model achieved reliable results. We finally determined 0.747 as the optimal threshold for predicting the NF-κB DNA-binding sites with the SNMM model. The SNMM model thus provides a new alternative model for scoring the relative binding affinities of NF-κB to the 10-bp DNA sequences and predicting the NF-κB DNA-binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号