首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The wound-activated biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine was compared in untransformed and transgenic tobacco (Nicotiana tabacum) lines that express tryptophan decarboxylase (TDC), tyrosine decarboxylase (TYDC), or both activities. Transgenic in vitro-grown tobacco lines expressing TDC activity accumulated high levels of tryptamine but not hydroxycinnamic amides of tryptamine. In contrast, transgenic tobacco lines expressing TYDC accumulated tyramine as well as p-coumaroyltyramine and feruloyltyramine. The MeOH-soluble and cell wall fractions showed higher concentrations of wound-inducible p-coumaroyltyramine and feruloyltyramine, especially at and around wound sites, in TYDC and TDC xTYDC tobacco lines compared to wild-type or TDC lines. All the enzymes involved in the biosynthesis of hydroxycinnamic acid amides of tyramine were found to be similarly wound inducible in all tobacco genotypes investigated. These results provide experimental evidence that, under some circumstances, TYDC activity can exert a rate-limiting control over the carbon flux allocated to the biosynthesis of hydroxycinnamic acid amides of tyramine.  相似文献   

2.
Kang S  Kang K  Lee K  Back K 《Planta》2007,227(1):263-272
l-Tryptophan decarboxylase (TDC) and l-tyrosine decarboxylase (TYDC) belong to a family of aromatic l-amino acid decarboxylases and catalyze the conversion of tryptophan and tyrosine into tryptamine and tyramine, respectively. The rice genome has been shown to contain seven TDC or TYDC-like genes. Three of these genes for which cDNA clones were available were characterized to assign their functions using heterologous expression in Escherichia coli and rice (Oryza sativa cv. Dongjin). The purified products of two of the genes were expressed in E. coli and exhibited TDC activity, whereas the remaining gene could not be expressed in E. coli. The recombinant TDC protein with the greatest TDC activity showed a K m of 0.69 mM for tryptophan, and its activity was not inhibited by phenylalanine or tyrosine, indicating a high level of substrate specificity toward tryptophan. The ectopic expression of the three cDNA clones in rice led to the abundant production of the products of the encoded enzymes, tyramine and tryptamine. The overproduction of TYDC resulted in stunted growth and a lack of seed production due to tyramine accumulation, which increased as the plant aged. In contrast, transgenic plants that produced TDC showed a normal phenotype and contained 25-fold and 11-fold higher serotonin in the leaves and seeds, respectively, than the wild-type plants. The overproduction of either tyramine or serotonin was not strongly related to the enhanced synthesis of tyramine or serotonin derivatives, such as feruloyltyramine and feruloylserotonin, which are secondary metabolites that act as phytoalexins in plants.  相似文献   

3.
Tyramine, one of the various biogenic amines found in plants, is derived from the aromatic L-amino acid tyrosine through the catalytic reaction of tyrosine decarboxylase (TYDC). Tyramine overproduction by constitutive expression of TYDC in rice plants leads to stunted growth, but an increased number of tillers. To regulate tyramine production in rice plants, we expressed TYDC under the control of a methanol-inducible plant tryptophan decarboxylase (TDC) promoter and generated transgenic T(2) homozygous rice plants. The transgenic rice plants showed normal growth phenotypes with slightly increased levels of tyramine in seeds relative to wild type. Upon treatment with 1% methanol, the transgenic rice leaves produced large amounts of tyramine, whereas no increase in tyramine production was observed in wild-type plants. The methanol-induced accumulation of tyramine in the transgenic rice leaves was inversely correlated with the tyrosine level. These data indicate that tyramine production in rice plants can be artificially controlled using the methanol-inducible TDC promoter, suggesting that this promoter could be used to selectively induce the expression of other proteins or metabolites in rice plants.  相似文献   

4.
A cytokinin biosynthetic gene encoding isopentenyl transferase (ipt) was cloned with its native promoter from Agrobacterium tumefaciens and introduced into tobacco plants. Indolebutyric acid was applied in rooting medium and morphologically normal transgenic tobacco plants were regenerated. Genetic analysis of self-fertilized progeny showed that a single copy of intact ipt gene had been integrated, and T2 progeny had become homozygous for the transgene. Stable inheritance of the intact ipt gene in T2 progeny was verified by Southern hybridization. Northern blot hybridization revealed that the expression of this ipt gene was confined in leaves and stems but undetectable in roots of the transgenic plants. Endogenous cytokinin levels in the leaves and stems of the transgenic tobaccos were two to threefold higher than that of control, but in roots, both the transgenic and control tobaccos had similar cytokinin levels. The elevated cytokinin levels in the transgenic tobacco leaves resulted in delayed leaf senescence in terms of chlorophyll content without affecting the net photosynthetic rate. The root growth and morphology of the plant were not affected in the transgenic tobacco.  相似文献   

5.
Noji M  Saito K 《Amino acids》2002,22(3):231-243
Summary. Serine acetyltransferase (SATase) and cysteine synthase (O-acetylserine (thiol)-lyase) (CSase) are committed in the final step of cysteine biosynthesis. Six cDNA clones encoding SATase have been isolated from several plants, e.g. watermelon, spinach, Chinese chive and Arabidopsis thaliana. Feedback-inhibition pattern and subcellular localization of plant SATases were evaluated. Two types of SATase that differ in their sensitivity to the feedback inhibition by l-cysteine were found in plants. In Arabidopsis, cytosolic SATase was inhibited by l-cysteine at a physiological concentration in an allosteric manner, but the plastidic and mitochondrial forms were not subjected to this feedback regulation. These results suggest that the regulation of cysteine biosynthesis through feedback inhibition may differ depending on the subcellular compartment. The allosteric domain responsible for l-cysteine inhibition was characterized, using several SATase mutants. The single change of amino acid residue, glycine-277 to cysteine, in the C-terminal region of watermelon SATase caused a significant decrease of the feedback-inhibition sensitivity of watermelon SATase. We made the transgenic Arabidopsis overexpressing point-mutated watermelon SATase gene whose product was not inhibited by l-cysteine. The contents of OAS, cysteine, and glutathione in transgenic Arabidopsis were significantly increased as compared to the wild-type Arabidopsis. Transgenic tobacco (Nicotiana tabacum) (F1) plants with enhanced CSase activities both in the cytosol and in the chloroplasts were generated by cross-fertilization of two transgenic tobacco expressing either cytosolic CSase or chloroplastic CSase. Upon fumigation with 0.1 μL L−1 sulfur dioxide, both the cysteine and glutathione contents in leaves of F1 plants were increased significantly, but not in leaves of non-transformed control plants. These results indicated that both SATase and CSase play important roles in cysteine biosynthesis and its regulation in plants. Received November 27, 2001 Accepted December 21, 2001  相似文献   

6.
7.
Min Yu  Peter J. Facchini 《Planta》1999,209(1):33-44
A development-specific and elicitor-inducible acyltransferase [hydroxycinnamoyl-CoA: tyramine N-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110)] that catalyzes the transfer of hydroxycinnamic acids from hydroxycinnamoyl-CoA esters to hydroxyphenethylamines was purified 988-fold to apparent homogeneity from opium poppy (Papaver somniferum L.) cell-suspension cultures. The purification procedure, which resulted in a 6.8% yield, involved hydrophobic interaction and anion-exchange chromatography, followed by affinity chromatography on Reactive Yellow-3-Agarose using the acyl donor (feruloyl-CoA) as eluent. Purified THT had an isoelectric point of 5.2, a native molecular mass of approximately 50 kDa, and consisted of two apparently identical 25-kDa subunits as determined by two-dimensional polyacrylamide gel electrophoresis. The purified enzyme was able to synthesize a variety of amides due to a relatively low specificity for cinnamoyl-CoA derivatives and hydroxyphenethylamines. The best substrates were feruloyl-CoA (VK m −113.4 mkat g−1 M−1) and tyramine (VK m −16.57 mkat g−1 M−1). The THT activity increased during development of opium poppy seedlings, occurred at high levels in roots and stems of mature plants, and was induced in cell-suspension cultures after treatment with a pathogen-derived elicitor. Immunoblot analysis using THT mouse polyclonal antibodies did not always show a correlation between THT polypeptide and enzyme activity levels. For example, despite low THT activity in leaves, an abundant 25-kDa immunoreactive polypeptide was detected. Immunohistochemical localization showed that THT polypeptides occur in cortical and xylem parenchyma, immature xylem vessel elements, root periderm, anthers, ovules, and the inner layer of the seed coat, but are most abundant in phloem sieve-tube members in roots, stems, leaves, and anther filaments. Received: 19 January 1999 / Accepted: 3 March 1999  相似文献   

8.
A pathogen-elicitor-inducible acyltransferase [tyramine hydroxycinnamoyltransferase (THT); EC 2.3.1], which catalyzes the transfer of hydroxycinnamic acids from hydroxycinnamoyl-CoA esters to tyramine in the formation of N-hydroxycinnamoyltyramine, was purified to apparent homogeneity from cell-suspension cultures of potato (Solanum tuberosum L. cv. Datura), with a 1400-fold enrichment, a 5% recovery and a final specific activity of 208 mkat·(kg protein)–1. Affinity chromatography on Reactive Yellow-3-Agarose using the acyl donor (feruloyl-CoA) as eluent was the decisive step in the purification sequence. The purified protein showed a native molecular mass of ca. 49 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and in the absence of a reducing agent (2-mercaptoethanol) indicated that THT is a heterodimer in which the protein subunits (ca. 25 kDa) are non-covalently associated. The enzyme was stimulated fivefold by 10 mM Ca2+. The apparent K m value for tyramine was dependent on the nature of the hydroxycinnamoyl-CoA present. Thus, the K m value for tyramine was about tenfold greater (174 M) in the presence of 4-coumaroyl-CoA than in the presence of feruloyl-CoA (20 M).Abbreviations PAL phenylalanine ammonia-lyase - THT hydroxycinnamoyl-CoA:tyramine hydroxycinnamoyltransferase We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. Further support by a grant from the Studienstiftung des Deutschen Volkes to H.H. is gratefully acknowledged.  相似文献   

9.
Wang H  Chen X  Xing X  Hao X  Chen D 《Plant cell reports》2010,29(12):1391-1399
Atrazine chlorohydrolase (AtzA) catalyzes hydrolytic dechlorination and can be used in detoxification of atrazine, a herbicide widely employed in the control of broadleaf weeds. In this study, to investigate the potential use of transgenic tobacco plants for phytoremediation of atrazine, atzA genes from Pseudomonas sp. strain ADP and Arthrobacter strain AD1 were transferred into tobacco. Three and four transgenic lines, expressing atzA-ADP and atzA-AD1, respectively, were produced by Agrobacterium-mediated transformation. Molecular characterization including PCR, RT-PCR and Southern blot revealed that atzA was inserted into the tobacco genome and stably inherited by and expressed in the progenies. Seeds of the T1 transgenic lines had a higher germination percentage and longer roots than the untransformed plants in the presence of 40–150 mg/l atrazine. The T2 transgenic lines grew taller, gained more dry biomass, and had higher total chlorophyll content than the untransformed plants after growing in soil containing 1 or 2 mg/kg atrazine for 90 days. No atrazine residue remained in the soil in which the T2 transgenic lines were grown (except 401), while, in the case of the untransformed plants, 0.91 mg (81.3%) and 1.66 mg (74.1%) of the atrazine still remained in the soil containing 1 and 2 mg/kg of atrazine, respectively, indicating that the transgenic lines could degrade atrazine effectively. The transgenic tobacco lines developed could be useful for phytoremediation of atrazine-contaminated soil and water.  相似文献   

10.
Hydroxycinnamoyl-CoA : tyramine N-(hydroxycinnamoyl) transferase (THT) is a pivotal enzyme in the synthesis of N-(hydroxycinnamoyl)-amines, which are associated with cell wall fortification in plants. The cDNA encoding THT was cloned from the leaves of UV-C treated Capsicum annuum (hot pepper) using a differential screening strategy. The predicted protein encoded by the THT cDNA is 250 amino acids in length and has a relative molecular mass of 28,221. The protein sequence derived from the cDNA shares 76% and 67% identity with the potato and tobacco THT protein sequences, respectively. The recombinant pepper THT enzyme was purified using a bacterial overexpression system. The purified enzyme has a broad substrate specificity including acyl donors such as cinnamoyl-, sinapoyl-, feruloyl-, caffeoyl-, and 4-coumaroyl-CoA and acceptors such as tyramine and octopamine. In UV-C treated plants, the THT mRNA was strongly induced in leaves, and the elevated level of expression was stable for up to 36 h. THT mRNA also increased in leaves that were detached from the plant but not treated with UV-C. THT expression was measured in different plant tissues, and was constitutive at a similar level in leaf, root, stem, flower and fruit. Induction of THT mRNA was correlated with an increase in THT protein.  相似文献   

11.
We evaluated the concept for protection of plants against virus infection based on the expression of single-chain Fv (scFv) fragments in the apoplasm or cytosol of transgenic plants. Cloned cDNA of a tobacco mosaic virus (TMV)-specific scFv antibody, which binds to intact virions, was integrated into the plant expression vector pSS and used for Agrobacterium-mediated transformation of Nicotiana tabacum cv. Xanthi-nc. Regenerated transgenic tobacco plants were analysed by northern blot, western blot and ELISA to assess expression and functionality of recombinant antibody (rAb) fragments. A significant increase of scFv levels in T1 progeny was obtained for plants secreting apoplastic scFv antibodies but not for scFvs expressed in the cytosol. Bioassays revealed that T1 progeny producing scFvs in different plant cell compartments showed different levels of resistance upon inoculation with TMV. The most dramatic reduction of necrotic local lesion numbers upon virus infection was observed in T1 plants expressing scFv fragments in the cytosol. Infectivity could be reduced by more than 90%, despite the observation that protein expression levels for functional scFv antibodies were very low. Furthermore, upon inactivation of the N-resistance gene at elevated temperature, a significant portion of the T1 progenies inhibited systemic virus spread, indicating that expression of TMV-specific cytosolic scFvs confers virus resistance in these transgenic plants. Moreover, inoculation of protoplasts isolated from transgenic and non-transgenic tobacco plants with TMV-RNA demonstrated that accumulation of virus particles is affected by cytosolic scFv expression.  相似文献   

12.
13.
Mungbean, Vigna radiata (L.) Wilczek is an important pulse crop that is widely cultivated in semi- arid tropics. The crop is attacked by various soil-borne pathogens like Rhizoctonia solani, which causes dry rot disease and seriously affects its productivity. Earlier we characterized the non-expressor of pathogenesis related gene-1(BjNPR1) of mustard, Brassica juncea, the counterpart of AtNPR1 of Arabidopsis thaliana. Here, we transformed mungbean with BjNPR1 via Agrobacterium tumefaciens. Because of the recalcitrant nature of mungbean, the effect of some factors like Agrobacterium tumefaciens strains (GV2260 and LBA4404), pH, l-cysteine and tobacco leaf extract was tested in transformation. The transgenic status of 15 plants was confirmed by PCR using primers for nptII. The independent integration of T-DNA in transgenic plants was analyzed by Southern hybridization with an nptII probe and the expression of BjNPR1 was confirmed by RT–PCR. Some of the T0 plants were selected for detached leaf anti-fungal bioassay using the fungus Rhizoctonia solani, which showed moderate to high level of resistance depending on the level of expression of BjNPR1. The seedling bioassay of transgenic T2 plants indicated resistance against dry rot disease caused by R. solani.  相似文献   

14.
Overexpression of antifungal pathogenesis-related (PR) proteins in crop plants has the potential for enhancing resistance against fungal pathogens. Thaumatin-like proteins (TLPs) are one group (PR-5, permatins) of antifungal PR-proteins isolated from various plants. In the present study, a plasmid containing a cDNA of rice tlp (D34) under the control of the CaMV-35S promoter was introduced into tobacco plants through Agrobacterium-mediated transformation system. A considerable overproduction of TLP was observed in transformed tobacco plants by Western blot analysis. There was a large accumulation of tlp mRNA in transgenic plants as revealed by Northern blot analysis. Southern blot analysis of the DNA from transgenic tobacco plants confirmed the presence of the rice tlp gene in the genomic DNA of transgenic tobacco plants. Immunoblot analysis of intracellular and extracellular proteins of transgenic tobacco leaves using a Pinto bean TLP antibody demonstrated that the 23-kDa TLP was secreted into the extracellular matrix. T2 progeny of regenerated plants transformed with TLP gene were tested for their disease reaction to Alternaria alternata, the brown spot pathogen. Transgenic tobacco plants expressing TLP at high levels showed enhanced tolerance to necrotization caused by the pathogen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants   总被引:9,自引:0,他引:9  
Summary We have obtained transgenic tobacco plants overexpressing the enzyme glutamine synthetase (GS) by fusing an alfalfa GS gene to the cauliflower mosaic virus 35S promotor and integrating it intoNicotiana tabacum var. W38 plants byAgrobacterium tumefaciens mediated gene transfer. The amount of RNA specific to alfalfa GS was about 10 times higher in transgenic tobacco plants than in alfalfa. The alfalfa GS produced by these transgenic plants was identified by Western blotting and represented 5% of total soluble protein in the transformed plants, amounting to a 5-fold increase in specific GS activity and in a 20-fold increase in resistance to the GS inhibitorl-phosphinothricin in vitro. Tissue from GS overproducing plants showed a sevenfold lower amount of free NH3. The amino acid composition of the plant tissue was not altered significantly by GS overproduction. GS overproducing plants were fertile and grew normally. These data show that a high level of expression of a key metabolic enzyme such as glutamine synthetase does not interfere with growth and fertility of plants.  相似文献   

16.
17.
Two-dimensional gel electrophoresis of in vitro translation products was used to examine differences between the steady state RNA populations of an untransformed tobacco plant line and a non-rooting tobacco shoot line transformed with a T l -DNA segment from Agrobacterium tumefaciens carrying the cytokinin gene (T-cyt). The analysis comprised about 240 translation products representing the more abundant mRNAs. Approximately 8% of the translation products were found to have significantly different concentrations, due to both increases and decreases, when the shoot parts of the transformed and untransformed lines were compared. Only a few of these differences were specific for the comparison of transformed and untransformed shoots. Most of the differences were also observed when the shoot and root parts of the untransformed line were compared. This implies that the shoot or root prevalence of several mRNA species in normal plants is altered in transgenic T-cyt shoots. The observed changes in the mRNA population of transgenic T-cyt shoots are discussed in relation to the transformed phenotype and previously cloned mRNAs showing similar changes in tissue-specific prevalence.  相似文献   

18.
We report here a new selectable marker for tobacco immature pollen transformation based on the expression of dihydrofolate reductase (dhfr) gene which confers resistance to methotrexate (Mtx). Two immature pollen transformation approaches, i.e., male germ line transformation and particle bombardment of embryogenic mid-bicellular pollen have been used for the production of stable transgenic tobacco plants. In the first method, two methotrexate-resistant plants were selected from a total of 7161 seeds recovered after transformation experiments. In the second method, four methotrexate-resistant plants were obtained from 29 bombardments using 3.7×105 pollen grains per bombardment. Southern analysis confirmed the transgenic nature of T0 and T1 candidate transgenic plants, and a genetic analysis showed that the transgenes are transmitted to subsequent generations.  相似文献   

19.
The wound-induced expression of tpoxN1, encoding a tobacco peroxidase, is unique because of its vascular system-specific expression and insensitivity to known wound-signal compounds such as jasmonic acid, ethylene, and plant hormones [Sasaki et al. (2002) Plant Cell Physiol 43:108–117]. To study the mechanism of expression, the 2-kbp tpoxN1 promoter region and successive 5′-deletion of the promoter were introduced as GUS fusion genes into tobacco plants. Analysis of GUS activity in transgenic plants indicated that a vascular system-specific and wound-responsive cis-element (VWRE) is present at the −239/−200 region of the promoter. Gel mobility shift assays suggested that a nuclear factor(s) prepared from wounded tobacco stems binds a 14-bp sequence (−229/−215) in the −239/−200 region in a sequence-specific manner. A mutation in this 14-bp region of the −239 promoter fragment resulted in a considerable decrease in wound-responsive GUS activity in transgenic plants. An 11-bp sequence, which completely overlaps with the 14-bp sequence, was found in the 5′ distal region (−420/−410) and is thought to contribute to the wound-induced expression together with the 14-bp. The −114-bp core promoter of the tpoxN1 gene was indispensable for wound-induced expression, indicating that the 14-bp region is a novel wound-responsive cis-element VWRE, which may work cooperatively with other factors in the promoter.  相似文献   

20.
l-Galactono-1,4-lactone (GalL) dehydrogenase (GLDH) is an enzyme that catalyzes the last step of l-ascorbate (AsA) biosynthesis in plants. To re-evaluate the importance of the enzyme and the possibility of manipulating the AsA content in plants, a cDNA encoding GLDH from sweet potato was introduced into tobacco plants by Agrobacterium-mediated transformation under the control of a CaMV 35S promoter. Protein blot analysis revealed the elevation of GLDH protein contents in three GLDH-transformed lines. Furthermore, these transgenic lines showed 6- to 10-fold higher GLDH activities in the roots than the non-transformed plants, SR1. Despite the elevated GLDH activity, the AsA content in the leaves did not change in all lines; i.e., the AsA content in GLDH-transformed lines was 3–7 μmol g−1 FW, comparable to that in the non-transformed plants. Incubation of leaf discs in a GalL solution led to a rapid 2- to 3-fold increase in the AsA content in both GLDH-transformed and non-transformed plants in the same manner. These results suggest that the supply of GalL is a crucial factor for determining the AsA pool size and that the upstream genes in the AsA biosynthetic pathway are responsible for enhancing the AsA content in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号